Filling the Gap: A Tool to Automate Parameter Estimation for Software Performance Models

Weikun Wang, Juan F. Pérez, Giuliano Casale
Department of Computing
Imperial College London
weikun.wang11@imperial.ac.uk

September 1, 2015
Motivation

- DevOps - a recent trend in Software engineering
- Bridges the gap between software development and operations
- Use performance models for QoS analysis
- Accurate parametrization is challenging
FG tool

- Continuous performance model parametrization
- Advanced estimation algorithms
- Statistical inference from monitoring data
- Application QoS report generation
FG Components

- FG Local DB: monitoring data storage
- FG Analyzer: statistical analysis
- FG Actuator: performance model update
- FG Reporter: application performance report
FG Architecture

- FG Local DB
- Monitoring History DB
- Computing Cluster
- FG Analyzer
- FG Report
- FG Actuator
- QoS Model
- Deployment Module
- Monitoring Platform
- App
Resource Demand

Definition: the cumulative execution time a request seize from a server, excluding contention

- An important parameter of queueing models
- Difficult to obtain directly
- Extensive monitoring poses overhead
Supported Demand Estimation Algorithms

- Complete Information (CI)
- Gibbs sampling with Queue Lengths (GQL)
- MINPS/FMLPS
- Extended Regression-Based approach (ERPS)
- FCFS
- Utilization-Based Regression/Optimization (UBR/UBO)
CI and GQL

CI
- Uses full trace: ts. of arrivals and departures
- Poses additional overhead for intensive monitoring

GQL
- Requires queue length samples, i.e. number of requests at the server
- Estimates demand with Bayes’ theorem
- Uses Gibbs sampling to obtain demand
MINPS/FMLPS

MINPS/FMLPS

- MINPS: a maximum likelihood (ML) method

- FMPLS: ML method with fluid approximation

- Both requires response times and queue lengths (arrival)
ERPS and FCFS

ERPS
- Requires response time and queue length (arrival)
- Linear regression to obtain demand

FCFS
- Estimation for FCFS servers
- Requires response time and queue length (arrival)
- Linear regression to obtain demand
Summary: required monitoring data

<table>
<thead>
<tr>
<th>Data Required</th>
<th>Algorithm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Full trace</td>
<td>CI</td>
</tr>
<tr>
<td>Utilization</td>
<td>UBR</td>
</tr>
<tr>
<td>Throughput</td>
<td>UBO</td>
</tr>
<tr>
<td>Queue length</td>
<td>GQL</td>
</tr>
<tr>
<td>Response Times</td>
<td>MINPS</td>
</tr>
<tr>
<td>Queue length (arrival)</td>
<td>ERPS</td>
</tr>
<tr>
<td></td>
<td>FCFS</td>
</tr>
</tbody>
</table>
Comparison between Demand Estimation Algorithms

(a) Error (%)

(b) Execution time (s)

Most accurate: CI Fastest: UBR

Discussions

- i) The feedback for different demand estimation algorithms: e.g.
 - How much monitoring information can be timely brought to the developers?
 - Which metric is the easiest or most readily available?
 - Which metric poses the least overhead?

- ii) How to correlate the resource IDs as well as the request types for inconsistent design time model/deployment model/monitoring data?