
MBEES 2018
MBEES 2018
MBEES 2018
MBEES 2018
MBEES 2018

Tagungsband des
Dagstuhl-Workshops

Modellbasierte Entwicklung
eingebetteter Systeme XIV

Matthias Riebisch

Michaela Huhn
Hardi Hungar

Sebastian Voss

Tagungsband

Dagstuhl-Workshop MBEES:
Modellbasierte Entwicklung
eingebetteter Systeme XIV

Model-Based Development of Embedded Systems
16.04.2018 – 18.04.2018

fortiss GmbH
Guerickestr. 25
80805 München

Organisationskomitee

Prof. Dr. Michaela Huhn, Ostfalia Hochschule für angewandte Wissenschaften

Prof. Dr.-Ing. habil. Matthias Riebisch, Universität Hamburg

PD Dr. Hardi Hungar, Deutsches Zentrum für Luft- und Raumfahrt

Dr. Sebastian Voss fortiss GmbH

Programmkomitee

Sibylle Froeschle, OFFIS & Universität Oldenburg

Michaela Huhn, Ostfalia Hochschule für angewandte Wissenschaften

Hardi Hungar, DLR

Matthias Riebisch, Universität Hamburg

Bernhard Rumpe, RWTH Aachen

Andy Schürr, TU Darmstadt

Andreas Vogelsang, TU Berlin

Sebastian Voss, fortiss GmbH

Inhaltsverzeichnis

Zum fehlenden Architekturverständnis über Implementierungsmodelle
multifunktionaler eingebetteter Systeme in der industriellen Praxis
 Timo Kehrer, Andreas Vogelsang, Thomas Vogel and Heiko Dörr 1

Qualification of Model-Based Development Tools - A Case Study

Mirko Conrad, Sophia Kohle and Hartmut Pohlheim 7

Feature-based Recommendation for Product Configuration in the
Software Product Lines
 Yibo Wang, Lothar Hotz and Matthias Riebisch 19

Feature-oriented Domain-specific Languages
 Philipp Ulsamer, Tobias Fertig and Peter Braun 31

Using PLC Programming Languages for Test-Case Specification of
Hardware-in-the-loop Tests

David Thönnessen and Stefan Kowalewski 41

Finding Inconsistencies in Design Models and Requirements by Applying
the SMARDT Process
 Stefan Kriebel, Evgeny Kusmenko, Bernhard Rumpe and

Michael von Wenckstern 51

Applying DSE for Solving the Deployment Problem in Industry 4.0
 Tarik Terzimehic, Sebastian Voss, Monika Wenger and

Vincent Aravantinos 61

Exploration of hardware topologies and complexity reduction
 Johannes Eder 71

Ein Mittel zur Wiederverwendung -- Komponentenbasierte Architekturen
in der Automatisierungstechnik
 Constantin Wagner, Julian Grothoff and Ulrich Epple 81

Integrating a Signaling Component Model into a Railway Simulation
 Daniel Schwencke 87

Innerhalb der Gesellschaft für Informatik e.V. (GI) befasst
sich eine große Anzahl von Fachgruppen explizit mit der
Modellierung von Software- bzw. Informationssystemen.
Der erst neu gegründete Querschnittsfachausschuss Mo-
dellierung der GI bietet den Mitgliedern dieser Fachgruppen
der GI - wie auch nicht organisierten Wissenschaftlern und
Praktikern - ein Forum, um gemeinsam aktuelle und zukünf-
tige Themen der Modellierungsforschung zu erörtern und
den gegenseitigen Erfahrungsaustausch zu stimulieren.

Das Institut für Software Engineering ist eine wissenschaft-
liche Einrichtung der Fakultät Informatik der Ostfalia, Hoch-
schule für angewandte Wissenschaften. Die Forschungs-
schwerpunkte sind

 Entwicklung komplexer Systeme auf Basis von Java und
Java EE

 Entwicklung webbasierter Oberflächen und mobiler Sy-
steme

 Theoretische Grundlagen der Software-Entwicklung und
formale Methoden

 Entwurfs- und Implementierungskonzepte für Software-
Systeme

 Qualitätssicherung von Entwicklungsprozessen

 Modellgetriebene Software-Entwicklung
Die Anwendbarkeit der Lösungen wird immer wieder in in-
dustrienahen Projekten überprüft.

Schloss Dagstuhl wurde 1760 von dem damals regierenden
Fürsten Graf Anton von Öttingen-Soetern-Hohenbaldern er-
baut. 1989 erwarb das Saarland das Schloss zur Errichtung
des Internationalen Begegnungs- und Forschungszentrums
für Informatik. Das erste Seminar fand im August 1990 statt.
Jährlich kommen ca. 2600 Wissenschaftler aus aller Welt zu
40-45 Seminaren und viele sonstigen Veranstaltungen.

fortiss ist das Forschungsinstitut des Freistaats Bayern für
softwareintensive Systeme und Services mit Sitz in
München. Das Institut beschäftigt derzeit rund 130 Mitarbei-
ter, die in Forschungs-, Entwicklungs- und Transferprojek-
ten mit Universitäten und Technologie-Firmen in Bayern,
Deutschland und Europa zusammenarbeiten.

Schwerpunkte sind die Erforschung modernster Methoden,
Techniken und Werkzeuge der Softwareentwicklung, des
Systems- & Service-Engineering und deren Anwendung auf
verlässliche, sichere cyber-physische Systeme wie das In-
ternet of Things (IoT). fortiss ist in der Rechtsform einer ge-
meinnützigen GmbH organisiert. Gesellschafter sind der
Freistaat Bayern (als Mehrheitsgesellschafter) und die
Fraunhofer-Gesellschaft zur Förderung der angewandten
Forschung e.V..

Der Arbeitsbereich Softwareentwicklungs- und -konstrukti-
onsmethoden SWK im Fachbereich Informatik der Universi-
tät Hamburg forscht auf dem Gebiet der Evolution von Soft-
waresystemen. Dazu gehören Arbeiten zu modellbasierter
Softwareentwicklung, Softwarearchitekturen, Software-
Reengineering sowie deren Einbettung in Entwicklungspro-
zesse. Das Ziel der Arbeiten sind ingenieurgemäße Vorge-
hensweisen und Methoden und deren Anwendbarkeit in der
industriellen Praxis.

Das Deutsche Zentrum für Luft- und Raumfahrt (DLR) ist
das Forschungszentrum der Bundesrepublik Deutschland
für Luft- und Raumfahrt. Seine Forschungs- und Entwick-
lungsarbeiten in Luftfahrt, Raumfahrt, Energie, Verkehr, Di-
gitalisierung und Sicherheit sind in nationale und internatio-
nale Kooperationen eingebunden.

Das Institut für Verkehrssystemtechnik ist eines der 36 In-
stitute des DLR. Es betreibt Forschung und Entwicklung für
Automobil- und Bahnsysteme und das Verkehrs- und Mobi-
litätsmanagement. Die Leitziele der Arbeit sind: Sicherheit,
Effizienz, Nachhaltigkeit, Wirtschaftlichkeit und Qualität.

Dagstuhl-Workshop MBEES:

Modellbasierte Entwicklung eingebetteter Systeme

(Model-Based Development of Embedded Systems)

Die Bandbreite der Beiträge der diesjährigen Auflage der Dagstuhl-Work-
shopreihe „Modellbasierte Entwicklung eingebetteter Systeme“ zeigt, dass Mo-
delle in vielen Bereichen eine wichtige Rolle spielen, von der Beherrschung der
Komplexität von Entwurfsaufgaben über die Validierung und Verifikation von Sy-
stemen bis zur Generierung von Konfigurationen oder Software. Bei eingebetteten
Systemen besteht eine besondere Herausforderung in der Modellierung über
Plattform-, Technologie- und Hardware-Software-Grenzen hinweg. Die Spezifik
solcher Systeme erfordert eine starke Anpassung von Modellierungssprachen an
die Anforderungen der Domänen. Neue Entwicklungsrichtungen wie Industrie 4.0
und die Beherrschung der daraus resultierenden Datenmengen erfordern die
Weiterentwicklung bisher bekannter Modellierungsansätze, beispielsweise be-
züglich anwendungsorientierter Modelle mit domänenspezifischen Konzepten.
Beiträge zur Weiterentwicklung des Stands der Forschung und zum Transfer in
die industrielle Anwendung sind daher ein wesentliches Anliegen über die elf Aus-
gaben des Workshops hinweg. Der Fokus auf den– für eingebettete Systeme be-
sonders wesentlichen – Bereich der Regelungs- und Steuerungstechnik stellt ein
bedeutsames Ziel der industriellen modellbasierten Entwicklung dar.

Wie in den vorangehenden Jahren stellen die in diesem Tagungsband zusammen-
gefassten Papiere sowohl gesicherte Ergebnisse, als auch Work-In-Progress, indu-
strielle Erfahrungen und innovative Ideen aus diesem Bereich zusammen und er-
reichen damit eine interessante Mischung theoretischer Grundlagen und praxis-
bezogener Anwendung. Die breiter angelegten Diskussionsmöglichkeiten zielen
auf eine Verstärkung des Austauschs zwischen solchen Ausrichtungen ab. Genau
wie bei den vorhergehenden erfolgreich durchgeführten Workshops 2005 bis
2017 sind damit wesentliche Ziele dieses Workshops erreicht:

 Austausch über Probleme und existierende Ansätze zwischen den unterschied-
lichen Disziplinen (insbesondere Elektro- und Informationstechnik, Maschinen-
wesen/Mechatronik, Automatisierungstechnik und Informatik)

 Austausch über relevante Probleme in der industriellen Anwendung und existie-
rende Ansätze in der Forschung

 Verbindung zu nationalen und internationalen Aktivitäten (z.B. Initiative des
IEEE zum Thema Model-Based Systems Engineering, GI-AK Modellbasierte Ent-
wicklung eingebetteter Systeme, GI-FG Echtzeitprogrammierung, MDA Initiative
der OMG)

Die Themengebiete, für die dieser Workshop gedacht ist, sind fachlich sehr gut
abgedeckt. Die Beiträge adressieren verschiedenste Aspekte modellbasierter Ent-
wicklung eingebetteter Softwaresysteme, unter anderem:

- Modelle in der architekturzentrierten Entwicklung und bei der Produktlinien-
entwicklung für Hardware-Software-Systeme und Software-intensive Systeme

- Domänenspezifische Ansätze zur Modellierung von Systemen

- Modellbasierte Validierung, Verifikation und Diagnose

- Modellierung zwecks Simulation von Systemverhalten zur Laufzeit

- Bewertung der Qualität von Modellen

- Funktionale Sicherheit und modellbasierte Entwicklung

- Evolution von Modellen

- Einbindung von Modellbasierten Entwicklung in Entwicklungsprozesse

Das Organisationskomitee ist der Meinung, dass mit den Teilnehmern aus Indu-
strie, Werkzeugherstellern und der Wissenschaft die bereits seit 2005 erfolgte
Community-Bildung erfolgreich weitergeführt wurde. Der nunmehr zwölfte
MBEES Workshop belegt, dass eine solide Basis zur Weiterentwicklung des The-
mas modellbasierter Entwicklung eingebetteter Systeme existiert. Der hohe Anteil
von deutschen Forschern und Entwicklern an den einschlägigen internationalen
Konferenzreihen zu Modellierung und Cyperphysical Systems zeigt, dass die deut-
sche Zusammenarbeit in diesem Themenfeld Früchte getragen hat.

Die Durchführung eines erfolgreichen Workshops ist ohne vielfache
Unterstützung nicht möglich. Wir danken daher den Mitarbeitern von Schloss
Dagstuhl.

Schloss Dagstuhl im März 2018,

Das Organisationskomitee:

Michaela Huhn, Ostfalia Hochschule für angewandte Wissenschaften

Hardi Hungar, DLR

Matthias Riebisch, Uni Hamburg

Sebastian Voss, fortiss GmbH

Mit Unterstützung von

Tarik Terzimehic, fortiss GmbH

cbe

(Hrsg.): ,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2018 1

Zum fehlenden Architekturverständnis über
Implementierungsmodelle multifunktionaler eingebetteter
Systeme in der industriellen Praxis

Timo Kehrer1, Andreas Vogelsang2, Thomas Vogel3, Heiko Dörr4

Abstract: Klassische eingebettete Systeme werden zunehmend zu autonomen und offenen Systemen,
die auf ihre Umwelt reagieren und im Verbund mit anderen Systemen übergeordnete Ziele verfolgen.
Modellbildung ist ein vielversprechender Ansatz, die Komplexität solcher multifunktionalen Systeme
zu beherrschen. Auf der Ebene der Teilfunktionen hat sich Matlab-Simulink in vielen Unternehmen,
bspw. in der Automobilbranche, als de-facto Standard für die modellbasierte Entwicklung von
eingebetteten Systemen etabliert. Die Implementierungsmodelle der Teilfunktionen werden jedoch
arbeitsteilig entwickelt und erst spät im Entwicklungsprozess zu einem Gesamtsystem integriert. Ein
Gesamtsystem wird somit durch eine Menge lose gekoppelter Simulink-Modelle beschrieben, das
Wissen über deren Kommunikationsbeziehungen ist lediglich implizit vorhanden und geht im Zuge der
Softwareevolution zunehmend verloren. Bei der Integration kommt es daher häufig zu unerwünschtem
und oftmals nicht vorhergesehenem Verhalten. Eine Analyse der entsprechenden Interaktionen
einzelner Teilfunktionen ist derzeit lediglich auf Basis des generierten Quellcodes möglich. Dies steht
jedoch in eklatantem Widerspruch zum Paradigma der modellbasierten Softwareentwicklung und
führt zu hohen Integrationskosten. In diesem Papier analysieren wir diese Problematik des fehlenden
„architektonischen“ Verständnis über eine Menge von Implementierungsmodellen und stellen unser
Forschungsvorhaben zur Anhebung von funktionsübergreifenden Analysen auf die Modellebene vor.

1 Einführung

Klassische eingebettete Systeme entwickeln sich zunehmend zu autonomen und offenen
Systemen, die auf ihre Umwelt reagieren und im Verbund mit anderen Systemen übergeord-
nete Ziele verfolgen. Dabei übernehmen einzelne Systeme immer mehr und vielfältigere
Aufgaben und werden somit zu multifunktionalen Systemen [1]. Abb. 1 zeigt eine exemplari-
sche Übersicht, wie die Entwicklung von multifunktionalen Systemen heute typischerweise
aus Sicht eines Herstellers (engl. Original Equipment Manufacturer (OEM)) strukturiert
ist. Ein komplexes System wird zunächst zerlegt in Subsysteme, welche die einzelnen
Funktionen thematisch gruppieren. Im Fahrzeugbau wird oft von Domänen gesprochen
1 Institut für Informatik, Humboldt-Universität zu Berlin. timo.kehrer@informatik.hu-berlin.de
2 Fachgebiet IT-basierte Fahrzeuginnovationen, Technische Universität Berlin. andreas.vogelsang@tu-berlin.de
3 Institut für Informatik, Humboldt-Universität zu Berlin. thomas.vogelinformatik.hu-berlin.de
4 Model Engineering Solutions GmbH. doerr@model-engineers.com

https://creativecommons.org/licenses/by-nc/3.0/
timo.kehrer@informatik.hu-berlin.de
andreas.vogelsang@tu-berlin.de
thomas.vogelinformatik.hu-berlin.de
doerr@model-engineers.com

2 T. Kehrer, A. Vogelsang, T. Vogel, H. Dörr

(Karosserie, Antriebsstrang, Fahrerassistenz, Infotainment, etc.). Im Rahmen eines Teil-
systems werden dann eine Reihe von Kundenfunktionen spezifiziert. Eine Kundenfunktion
beschreibt ein gewünschtes Verhalten an der Systemgrenze, z.B. durch Kunden wahrnehmbar.

5

SystemAnforderungen

Subsystem Subsystem Subsystem

Teil-
funktion

Teil-
funktion

Teil-
funktion

Teil-
funktion

Signalkatalog

Kunden-
funktion

Kunden-
funktion

Kunden-
funktion

Kunden-
funktion

Abb. 1: Zerlegung eines multifunktionalen Systems.

Der Begriff Kunde ist hier breit ge-
fasst und enthält alle externen Systeme
und Aktoren, die mit dem zu entwi-
ckelnden System interagieren. Kun-
denfunktionen werden weiter herun-
tergebrochen in einzelne Teilfunktio-
nen, welche die Kundenfunktionen
dann realisieren, indem sie Signale
verarbeiten und daraus neue Signale
erzeugen. Die im System verfügbaren
Signale sind in einem Signalkatalog
erfasst. Wenn zu den Teilfunktionen,
die an der Realisierung einer Kun-
denfunktion beteiligt sind auch noch
deren Abhängigkeiten dokumentiert
werden, dann spricht man auch von ei-
ner Wirkkette. Wirkketten stellen also

eine partielle Sicht auf die Architektur der Teilfunktionen und deren Abhängigkeiten dar.

Modellbildung ist ein vielversprechender Ansatz, die Komplexität von multifunktionalen
Systemen zu beherrschen. Auf der Ebene der Teilfunktionen setzen Unternehmen verstärkt
auf modellbasierte Entwicklung, wobei sich Matlab Simulink5 als de-facto Standard für
die modellbasierte Entwicklung von eingebetteten Systemen etabliert hat. In Simulink
wird das Verhalten einer Teilfunktion mit Hilfe eines datenflussorientierten Modells be-
schrieben. Aus diesem Implementierungsmodell kann später automatisch Code erzeugt
werden, der auf einem Steuergerät ausgeführt wird und das gewünschte Verhalten erbringt.
Die Implementierungsmodelle der Teilfunktionen eines multifunktionalen Systems wer-
den jedoch arbeitsteilig und meist in unterschiedlichen Abteilungen eines Unternehmens
entwickelt und erst sehr spät im Entwicklungsprozess zu einem Gesamtsystem integriert.
Ein Gesamtsystem wird somit durch eine Menge lose gekoppelter und autark entwickelter
Simulink-Modelle beschrieben, das Wissen über deren Kommunikationsbeziehungen ist
lediglich implizit vorhanden. Bei der Integration kommt es daher häufig zu ungewünschtem,
nicht vorhergesehenem Verhalten, so dass Integrations- und Testaktivitäten heute einen
Großteil der Kosten bei der Entwicklung von eingebetteten Systemen verursachen [2].

In Abschnitt 2 analysieren wir die Problematik des fehlenden „architektonischen“ Verständnis
über eine Menge von Implementierungsmodellen, welches wir insbesondere auf das Fehlen
von frühen und funktionsübergreifenden Analysen auf Modellebene zurückführen. Daraus
leiten wir in Abschnitt 3 unser Forschungsvorhaben zur konsequenten Anhebung aller

5 https://de.mathworks.com/products/simulink.html

https://de.mathworks.com/products/simulink.html

Architekturverständnis über Implementierungsmodelle multifunktionaler Systeme 3

integrativen Analysetätigkeiten auf die Modellebene ab. Eine Auswahl an alternativen
Ansätzen beleuchten wir in Abschnitt 4 und resümieren unser Positionspapier in Abschnitt 5.

2 Problemanalyse

Die Kosten für die Integration und den Test multifunktionaler eingebetteter Systeme
sind heute trotz modellbasierter Entwicklungsansätze sehr hoch. Kernhypothese unseres
Forschungsvorhabens ist, dass dies i.W. auf das fehlende architektonische Verständnis über
eine Menge lose gekoppelter Implementierungsmodelle zurückzuführen ist.

Eine Integration der Teilfunktionen findet erst auf Code- bzw. Geräteebene und damit sehr
spät im Entwicklungsprozess statt, so dass Abhängigkeiten zwischen diesen Teilfunktionen
in den früheren Phasen der Entwicklung nicht berücksichtigt werden. Es gibt keine explizite
Verwaltung und Kontrolle über die Abhängigkeiten. In Vorarbeiten haben wir festgestellt,
dass vermeintlich unabhängige Kundenfunktionen im Automobilbereich auf der Ebene der
Teilfunktionen hochgradig vernetzt sind [3], ca. die Hälfte aller Abhängigkeiten zwischen
Kundenfunktionen waren den Entwicklern unbekannt. In einem untersuchten Projekt im
Bereich Automotive Infotainment war das fehlende Verständnis über die Interaktionen der
Teilfunktionen die Ursache für mehr als 40% aller Fehler [4]. Ferner werden die Schnittstel-
lendefinitionen der Teilfunktionen in vielen Fällen in den Implementierungsmodellen nicht
eingehalten und es existieren keine Ansätze, um diese Abweichungen kontinuierlich zu
prüfen. Feilkas et al. [5] berichten über drei industrielle Fallstudien in denen bis zu 19% aller
Abhängigkeiten in der Implementierung von der ursprünglich spezifizierten Architektur
abweichen. Dabei war in vielen Fällen den Entwicklern nicht klar, ob es sich bei diesen
Abweichungen um Fehler in der Spezifikation oder in der Implementierung handelt. Auch
Wirkketten werden in der Praxis häufig nur zur Spezifikation von Kundenfunktionen genutzt.
Eine Verifikation der implementierten Architektur gegenüber spezifizierten Wirkketten
bleibt häufig aus. Hinzu kommt, dass die Spezifikation mit Hilfe von Wirkketten den Blick
für Abhängigkeiten zwischen Wirkketten trübt. Abhängigkeiten zwischen Teilfunktionen
unterschiedlicher Wirkketten sind in der implementierten Architektur vorhanden, spiegeln
sich aber nicht in den spezifizierten Wirkketten wieder.

Zusammenfassend lässt sich sagen, dass der Einsatz von Modellbasierung zur frühen
Fehlervermeidung und Reduzierung von Integrations- und Testkosten zwar vielversprechend
ist, das volle Potential aber erst ausgeschöpft werden kann, wenn die erstellten Imple-
mentierungsmodelle auch modellübergreifend analysiert werden und kontinuierlich auf
Abweichungen gegenüber abstrakteren Spezifikationen geprüft werden.

3 Forschungsvorhaben

Übergeordnetes Ziel unseres Forschungsvorhabens ist die Entwicklung von strukturbasierten
Verfahren zur Analyse der Architektur aller kommunizierenden Implementierungsmodelle,

4 T. Kehrer, A. Vogelsang, T. Vogel, H. Dörr

mit denen sich mögliche Integrationsrisiken frühzeitig erkennen lassen. Dies umfasst die
Identifikation und Erkennung von Architektur-Smells und Anti-Patterns, sowie die Verifikati-
on gegenüber funktionsübergreifenden, strukturellen Spezifikationen wie bspw. Wirkketten.
Grundlage aller modellbasierten Analysen bildet die tatsächlich vorliegende Architektur
über einer Menge autark entwickelter Implementierungsmodelle, welche in einem ersten
Reverse Engineering Schritt anhand der impliziten Abhängigkeiten zwischen den kommuni-
zierenden Implementierungsmodellen gewonnen werden soll. Die Art und Granularität der
extrahierten Architekturmodelle richten sich nach den jeweiligen Analysen. Da Simulink-
Modelle oft als Basis für die Codegenerierung dienen, werden diese in der Regel sehr gut
gepflegt und aktuell gehalten. Wir planen daher mit unseren Analysen auf einer Menge von
bestehenden Simulink-Modellen aufzusetzen, die jeweils eine Teilfunktion beschreiben. Es
ist geplant, die Analysen in das Qualitätssicherungswerkzeug MES M-XRAY6 einzubetten.
Die entwickelten Verfahren sind jedoch auch auf andere blockorientierte Modelltypen wie
bspw. Komponenten- und Konnektormodelle [6] übertragbar.

Ein Beispielszenario für die Verifikation einer Implementierungsarchitektur ist deren
Konformanzprüfung gegenüber der spezifizierten Soll-Architektur, welche sich bspw. aus den
Schnittstellendefinitionen der Software-Komponenten zur Realisierung von Teilfunktionen
ableiten lässt. In Matlab-Simulink werden zur Schnittstellenspezifikation einer Teilfunktion
oftmals die Ein- und Ausgaben (d.h. die Input- und Outputsignale) des Top-Level Subsystems
des entsprechenden Simulink-Modells verwendet. Eine Soll-Architektur resultiert somit
implizit aus den dadurch festgelegten Abhängigkeiten zwischen den verschiedenen Simulink-
Modellen. Im Beispiel in Abb. 2 enthält die Soll-Architektur eine Abhängigkeit zwischen
Teilfunktion 1 und Teilfunktion 2 über das Signal Sig_B. Zur Extraktion des tatsächlichen
Architekturmodells steigen wir tiefer in den hierarchischen Simulink-Modellen hinab und
interpretieren diese als Implementierung einer Teilfunktion. Wir analysieren, in wie weit
hier zusätzliche Abhängigkeiten vorhanden sind, die auf dem Top-Level Subsystem nicht
berücksichtigt wurden. Diese impliziten Abhängigkeiten stellen potentielle Verletzungen der
Ist-Architektur gegenüber der Soll-Architektur dar (im Beispiel die implizite Abhängigkeit
über das Signal Sig_X).

Eine offene Forschungsfrage ist, inwiefern Integrationsfehler tatsächlich mit architektoni-
schen Schwachstellen wie der oben skizzierten Abweichung von Soll- und Ist-Architekturen
korrelieren. Ähnliche Fragen ergeben sich für Architektur-Smells, Anti-Patterns sowie für
negative Ergebnisse bei der Verifikation von Wirkketten. Dies soll in empirischen Studien
in Kooperation mit unserem assoziierten Partner aus dem Bereich Automotive untersucht
werden. Auf unseren Forschungsergebnissen aufbauend wollen wir ferner Verfahren zur
Bewertung von Integrationsrisiken und schließlich auch zu deren geeigneter Behandlung
entwickeln.
6 https://www.model-engineers.com/de/m-xray.html

https://www.model-engineers.com/de/m-xray.html

Architekturverständnis über Implementierungsmodelle multifunktionaler Systeme 5

6

Teil-
funktion 1

Simulink Modell

Top Level
Subsystem

Simulink
Block

spezifiziert durch

Simulink
Subsystem

Simulink
Block

Simulink
Block

Teil-
funktion 2

Simulink Modell

Top Level
Subsystem

Simulink
Block

spezifiziert durch

Simulink
Subsystem

Simulink
Block

Simulink
Block

Simulink
Subsystem

Simulink
Block

Sig_A Sig_B Sig_B Sig_C

Sig_X

Sig_X

Sig_B

Sig_X

Abb. 2: Extraktion einer Soll- und Ist-Architektur durch Analyse von Simulink-Modellen.

4 Alternative Ansätze und verwandte Arbeiten

In der Praxis sind Verfahren zum Reverse Engineerung von Architekturen aus Imple-
mentierungsmodellen sowie darauf aufbauende, modellbasierte Analysen nicht etabliert.
Vielmehr werden aktuell Ansätze zum Forward-Engineering von Software-Architekturen
unter Einsatz klassischer UML-basierter Notationen erprobt. Jedoch haben diese Modelle
häufig nur einen Dokumentationscharakter und dienen nicht als technische Grundlage
für die Implementierung. Weiterhin werden spezielle Architekturdatenbanken eingesetzt,
aus denen Architekturspezifikationen für einzelne Simulink-Modelle gewonnen werden
können. Alle Ansätze haben gemein, dass ein nachträglicher Architekturabgleich nicht
konstruktiv unterstützt wird. Analysewerkzeuge für Implementierungsmodelle sind zwar
bereits verfügbar, unterstützen jedoch lediglich die Analyse einzelner, autonomer Modelle.
Ein Beispiel für ein ausgereiftes Analysewerkzeug für einzelne Simulink-Modelle ist MES
M-XRAY, modellübergreifende Analysen werden bislang jedoch nicht unterstützt.

Aus Forschungsperspektive mit unserem Ansatz vergleichbar ist die in [7] skizzierte Idee des
„kontinuierlichen Reverse Engineering“ und der stetigen Konformanzprüfung der extrahierten
Modelle zu dem entsprechenden Quellcode. Extrahiert werden hier jedoch klassische, aus
der Objektorientierung bekannte Modelltypen. In [8] werden Abhängigkeitsgraphen aus
Simulink-Modellen erzeugt, allerdings auf Basis eines einzelnen Simulink-Modells und mit
dem Ziel der automatisierten Testfallgenerierung. Modelle über Soll- und Ist-Architekturen
lassen sich als zwar als co-evolvierende Modelle auffassen, existierende Analysen von
co-evolvierenden Modellen konzentrieren sich meist auf Änderungen in klassischen Multi-
View-Modellen [9]. Ansätze zur Verifikation von Implementierungsmodellen gegenüber
abstrakten Spezifikationen fokussieren sich wie die in [6] vorgestellte Methode auf die
Formalisierung und Verifikation von Anforderungsspezifikationen, und wurden bislang
ebenfalls nur auf einzelne Implementierungsmodelle angewendet.

6 T. Kehrer, A. Vogelsang, T. Vogel, H. Dörr

5 Resümee

Trotz modellbasierter Methoden ist die Entwicklung multifunktionaler eingebetteter Sys-
teme eine überaus aktuelle Herausforderung. Ein Gesamtsystem wird in der Praxis meist
durch eine Menge lose gekoppelter Simulink-Modelle beschrieben, ein architektonisches
Verständnis über deren Kommunikationsbeziehungen ist lediglich implizit vorhanden, was
zu hohen Integrationskosten führt. Ziel unseres Forschungsvorhabens ist die Entwicklung
von strukturbasierten Verfahren zur Analyse der Architektur aller kommunizierenden Im-
plementierungsmodelle, mit denen sich mögliche Integrationsrisiken frühzeitig erkennen,
bewerten und letzten Endes auch behandeln lassen.

Literatur

[1] Manfred Broy. „Multifunctional software systems: Structured modeling and speci-
fication of functional requirements“. In: Science of Computer Programming 75.12
(2010).

[2] Claudiu Farcas u. a. „Addressing the Integration Challenge for Avionics and Automotive
Systems—From Components to Rich Services“. In: Proc. of the IEEE 98.4 (2010),
S. 562–583.

[3] Andreas Vogelsang und Steffen Fuhrmann. „Why Feature Dependencies Challenge
the Requirements Engineering of Automotive Systems: An Empirical Study“. In: Proc.
IEEE International Requirements Engineering Conference (RE’13). 2013.

[4] Sebastian Benz. „Generating Tests for Feature Interaction“. Diss. Technische Universi-
tät München, 2010.

[5] Martin Feilkas, Daniel Ratiu und Elmar Jurgens. „The loss of architectural knowledge
during system evolution: An industrial case study“. In: International Conference on
Program Comprehension (ICPC). IEEE. 2009, S. 188–197.

[6] Vincent Bertram u. a. „Component and Connector Views in Practice: An Experi-
ence Report“. In: 2017 ACM/IEEE 20th International Conference on Model Driven
Engineering Languages and Systems (MODELS). IEEE. 2017, S. 167–177.

[7] Gerardo Canfora, Massimiliano Di Penta und Luigi Cerulo. „Achievements and
Challenges in Software Reverse Engineering“. In: Commun. ACM 54.4 (2011).

[8] Adepu Sridhar, D. Srinivasulu und Durga P. Mohapatra. „Model-based test-case
generation for Simulink/Stateflow using dependency graph approach“. In: IEEE
International Advance Computing Conference (IACC). 2013.

[9] Sinem Getir, Michaela Rindt und Timo Kehrer. „A Generic Framework for Analyzing
Model Co-Evolution.“ In: ME @ MoDELS. 2014.

Qualification of Model-Based Development Tools
A Case Study

Mirko Conrad1
samoconsult GmbH

mirko.conrad @ samoconsult.de

Sophia Kohle, Hartmut Pohlheim
Model Engineering Solutions GmbH
sophia.kohle@model-engineers.com

pohlheim@model-engineers.com

Abstract: Modern functional safety standards typically provide objectives or re-
quirements on how to gain confidence in development tools used for electric and/or
electronic systems. The corresponding approaches are referred to as tool qualification,
tool validation, or tool certification.
To gain confidence in the tools used to develop automotive E/E systems, the ISO
26262 standard outlines a two-step approach consisting of tool classification poten-
tially followed by tool qualification.
Although some research about ISO 26262 tool classification has been published, in-
formation about the tool qualification part is rather limited. This paper intends to re-
duce this gap by reporting on the qualification of MXAM, a static analysis tool for
Simulink/TargetLink models.

1 Introduction

Software tools are widely used in multiple domains to assist in developing or verifying
electric and/or electronic systems (E/E systems). In E/E system development, such tools
can assist with analysis and potentially improve system safety by automating the activities
performed and by predictably performing tasks that may be prone to human error. On the
contrary, an error in a tool may have a negative impact on safety if the tool inadequately
performs its intended functions (cf. [DO 330]).

To reduce the potential risks associated with tool usage and to ensure the integrity of the
tool functionality, recent (functional) safety standards call for dedicated activities to gain
confidence in the tools used in the development of E/E systems. Depending on the domain
or standard, the corresponding approaches are referred to as tool validation, tool qualifi-
cation, or tool certification.

For the development of automotive E/E systems, the pertinent functional safety standard
is ISO 26262 [ISO 26262]. Part 8 of this standard calls for a two-step process to gain

1 https://orcid.org/0000-0003-3221-6503

https://orcid.org/0000-0003-3221-6503
https://orcid.org/0000-0002-1825-0097

confidence in software tools. It starts with (I) tool classification to determine the required
level of confidence in each software tool. Depending on the outcome of the first step, (II)
a subsequent tool qualification process to establish the required confidence might be nec-
essary.

When ISO 26262 came into effect in 2011, tool classification and qualification changed
from a niche topic to a mainstream requirement for automotive OEMs, their suppliers, and
software tool vendors. In the meantime, practitioners gained quite a bit of experience with
tool classification (see e.g., [Mai09], [CMR10], [Con10], [KKG10], [CF11], [HK11],
[Spä14], and [CF15]). Tool support for the ISO 26262 tool classification activities is avail-
able by means of dedicated Excel templates [Con14], [Con16], or the Tool Chain Analyzer
[SWP+12].

Actionable advice on tool qualification is – despite some general observations regarding
this topic (see e.g. [SWP+12]), work-share considerations (see e.g., [CMR10], [CSM11]),
or tool type-specific advice mostly for code generators and compilers (see e.g., [SS07],
[SCD07], [Glö08], [SML08], [KKG10]) – still lacking.

By outlining the approach taken to qualify the MES Model Examiner® (MXAM), a static
analysis tool/guideline checker for executable models used in the development of automo-
tive E/E systems, the authors aim to widen the accessible body of information on this topic.

2 Gaining Confidence in the Use of Software Tools – The ISO
26262 Approach

The two-step approach to gaining confidence in the use of software tools required as per
ISO 26262 is illustrated in Figure 1

Figure 1: Two-step approach to gaining confidence in the software tools used.

2.1 Tool Classification

Tool classification is based on the actual/intended usage of the tool. Therefore, the tool
usage needs to be documented by means of tool use cases. Each of the use cases is sub-
jected to further analysis.

First, potential malfunctions of the tool that could occur in the context of the use case at
hand need to be identified and documented. For each malfunction, it needs to be deter-
mined whether the tool could introduce errors into the E/E system under development or
fail to detect such errors. If it can be argued that there is no such possibility, the malfunc-
tion has a tool impact of 1 (TI1), otherwise the tool impact is 2 (TI2). If all malfunctions
in the context of a given use case are rated TI1, the entire use case can be considered TI1.

Second, the measures applied to prevent or detect these malfunctions or their resulting
erroneous output need to be documented and the confidence in these measures needs to be
rated. Depending on whether there is high, medium, or even low confidence, the tool error
detection is 1 (TD1), 2 (TD2), or 3 (TD3) respectively. In addition to the error detection
of the individual measures, the tool error detection of a combination of measures might be
rated [Con16] 2.

Third, a tool confidence level (TCL) is assigned to each combination of a tool use case
and a corresponding tool malfunction. Given a tool impact class (i.e., TI1 or TI2) and a
tool error detection class (i.e., TD1, TD2, or TD3), the corresponding TCL can be derived
according to Table 1 [ISO26262].

Table 1 Determination of the Tool Confidence Level (TCL).
Tool Error Detection

Tool Impact
TD1 TD2 TD3

TI1 TCL1 TCL1 TCL1

TI2 TCL1 TCL2 TCL3

Those combinations of use cases and malfunctions rated as TCL1 do not require further
action. For all other combinations, i.e. those rated TCL2 or TCL3, the tool qualification
process needs to be initiated. The tool classification step is documented in a tool criteria
evaluation report (a.k.a. tool classification report).

2.2 Tool Qualification

As per ISO 26262, tool qualification shall be carried out using a suitable combination of
the following four tool qualification methods:

2 A combination of orthogonal detection measures might have better error detection capability than each of the
individual measures. Rating such measure combinations requires engineering judgement and cannot be auto-
mated.

a) Increased confidence from use.
b) Evaluation of the tool development process.
c) Validation of the software tool.
d) Development in compliance with a safety standard.

The selection of appropriate tool qualification methods depends on the TCL and on the
Automotive Safety Integrity Level (ASIL) of the E/E system to be developed.

However, the practical significance of tool qualification methods a) 3 and d) is rather lim-
ited 4. The vast majority of all tool qualification approaches known to the authors use
method b) or c) or a combination thereof.

If the method b) ‘Evaluation of the tool development process’ is applied to qualify a soft-
ware tool, its tool development process shall comply with an appropriate standard. The
tool development process shall be assessed based on an appropriate national or interna-
tional standard (e.g., Automotive SPICE, CMMI, or ISO 15504) and the proper applica-
tion of the assessed development process shall be demonstrated.

If the method c) ‘Validation of the software tool’ is utilized, the validation of the software
tool shall meet three criteria:

a) It shall be demonstrated that the software tool complies with its specified require-
ments, e.g., by using validation tests or reviews designed to evaluate functional
and non-functional quality aspects of the tool.

b) If malfunctions occur during the validation, these malfunctions and the resulting
erroneous outputs shall be analyzed. Also, information on their possible conse-
quences and measures to avoid or detect them shall be provided.

c) The reaction of the software tool to anomalous operating conditions (e.g., fore-
seeable misuse, incomplete input data, and incompatible combinations of config-
uration settings) shall be examined.

The tool qualification step is documented in a tool qualification report.

3 Case Study: MXAM Qualification Kit

When utilizing the model-based development paradigm to develop automotive E/E sys-
tems, software units can be designed by means of executable Simulink or TargetLink mod-
els. Prior to code generation, the unit design needs to be statically analyzed to verify
compliance with the applicable modeling guidelines. Modeling guideline checking can be
carried out using MXAM.

3 Although a) sounds promising, it is rarely applicable due to frequent changes/updates to the tools being used.
4 Given the number and variety of development tools for E/E systems, proof of formal correctness could replace
or extend the listed qualification methods for only a small subset of these tools.

3.1 The MES Model Examiner® DRIVE

Using data and control flow analysis, MXAM checks Simulink or TargetLink models for
aspects of functional safety, such as strong data typing, appropriate scaling and ranges of
data, naming conventions, and layout.

Figure 2: Architectural components of MXAM.

MXAM consists of a framework providing general functionalities such as GUI, manage-
ment of projects and guidelines and checks, repair actions, and reporting. Further, depend-
ent on the platform, guideline checks are provided or can be implemented by the tool user
(cf. Figure 2). These checks comprise a description and an implementation.

3.2 Tool Usage, Malfunctions, and Prevention/Detection Measures

The tool criteria evaluation report for MXAM that ships with the MXAM ISO 26262
Qualification Kit (cf. [Ko18]) analyzes four main uses cases, including:

• [UC_MXAM01] Design Model – Modeling Guidelines Compliance Check.

Two potential malfunctions associated with the above use case will be used to illustrate
the MXAM qualification approach in this paper:

a) [E_MXAM02] Modeling Guidelines Compliance Check: Violation not found.

b) [E_MXAM07] Modeling Guidelines Compliance Check: Usage of incorrect
check parameters.

Certain malfunctions are overarching and thus check-agnostic. Corresponding qualifica-
tion activities are check-agnostic as well. Other malfunctions have check-specific aspects
and thus require check-specific qualification activities.

Table 2, Table 3, and Table 4 illustrate how this part of tool classification is documented
in the qualification kit.

[E_MXAM02]: To detect [E_MXAM02] in the context of [UC_MXAM01], subsequent
dynamic testing of the model under analysis can be applied ([M_MXAM01]). However,
the probability of detecting such a tool error with [M_MXAM01] is considered to be me-
dium and therefore the detection level is limited to TD2.

Additional subsequent guideline checking of the implementation model [M_MXAM03]
is another measure to counter [E_MXAM02]. Again, this method can detect certain but
not all instances of [E_MXAM02] and is therefore rated as TD2 as well.

Table 2: Tool Classification Example I ([UC_MXAM01] x [E_MXAM02])
Potential
Malfunction

TI Prevention/Detection
Measure

TD Justification for TD

[E_MXAM02]
Modeling Guide-
lines Compliance
Check: Violation
not found

TI2 [M_MXAM01]
Subsequent dynamic
testing of the model un-
der analysis

TD2 Guideline violation does not always result in in-
correct or unintended model functionality.
Actual model errors can be revealed by dynamic
testing ('medium' likelihood of error detection).

[M_MXAM03]
Subsequent modeling
guidelines checking of a
downstream model, e.g.
the implementation
model

TD2 Subsequent static checking of the implementation
model provides another means to identify guide-
line violations. However, if a check fails to detect
a violation in the design model, it may fail to
identify the same issue in the implementation
model as well ('medium' likelihood of error de-
tection).

MEASURE
COMBINATION

TD2 TCL 2  Addressed by MXAM ISO 26262
Qualification Kit.

Even if both measures are combined, a tool error detection better than TD2 could not be
achieved. As a result, the tool confidence level for [E_MXAM02] in the context of
[UC_MXAM01] is TCL2 and the combination [UC_MXAM01] x [E_MXAM02] needs
to be subjected to tool qualification.

Without a tool-vendor-provided qualification kit, the tool user would need to qualify
[UC_MXAM01] x [E_MXAM02], e.g., by validating the underlying MXAM functional-
ity with a test suite. In the case of MXAM, this burden on the user is eased by the MXAM
ISO 26262 Qualification Kit 5.

[E_MXAM07]: The second potential malfunction addresses that the check implementa-
tion could receive parameters from the MXAM framework that differ from the ones spec-
ified by the user (see Table 3). The default check parameters can be overwritten on several
levels by the user (e.g., project, document, guideline level). The error that is addressed
here might occur due to a defect in the overwrite algorithm that is common to all checks

5 Please note the lower right cell in Table 2 indicating that the tool user can leverage the qualification kit.

(i.e. check-agnostic). Malfunctions in the check-specific handling of check parameters are
covered by [E_MXAM02].

Table 3: Tool Classification Example II ([UC_MXAM01] x [E_MXAM07] – Initial Classification)
Potential Malfunction TI Error Prevention/

Detection Measure
TD Justification for TD

[E_MXAM07]
Modeling Guidelines Com-
pliance Check: Usage of in-
correct check parameters

TI2 [M_MXAM13]
Review of parameter
specification details

TD1 Review of the parameter specifi-
cation details ensures the correct-
ness of the guideline check
parameters to be used.

[M_MXAM11]
Check for Error Mes-
sages

TD2 Checking logs and compliance re-
ports for error messages helps to
detect anomalies such as an incor-
rect parameter definition.

MEASURE
COMBINATION

TD1 TCL 1

Malfunction [E_MXAM07] could be mitigated by reviewing the parameter specification
details provided by MXAM ([M_MXAM13]) as these document the actual check param-
eters used during check execution. Thus, sufficient error prevention is possible (TCL1, cf.
Table 3), but the necessary review activities would be very time consuming as they need
to be performed for each individual overwritten parameter.

To reduce the amount of necessary prevention/detection activities for the tool user, the
MXAM ISO 26262 Qualification Kit covers [E_MXAM07] as well, meaning that
[M_MXAM13] does not need to be carried out any more. Hence, the effort required by
the user to review every check parameter (currently more than 250 in the standard edition)
for each project has been replaced by a qualification activity to be carried out by the tool
vendor. This is reflected in the revised classification provided in Table 4.

Table 4: Tool Classification Example II ([UC_MXAM01] x [E_MXAM07] – Revised Classification)
Potential Malfunction TI Error Prevention/

Detection Measure
TD Justification for TD

[E_MXAM07]
Modeling Guidelines Com-
pliance Check: Usage of in-
correct check parameters

TI2 [M_MXAM11]
Check for Error
Messages

TD2 Checking logs and compliance re-
ports for error messages helps to
detect anomalies such as an incor-
rect parameter definition.

 MEASURE
COMBINATION

TD2 TCL 2  Addressed by MXAM
ISO 26262 Qualification Kit

3.3 Tool Qualification

[E_MXAM02]: In chapter 3.2, the need to qualify [UC_MXAM01] x [E_MXAM02] is
outlined. To qualify this use case-error combination, qualification method c) ‘Validation
of the software tool’ was chosen. A combination of check-specific test cases and reviews
was defined to verify that the corresponding checks identify all guideline violations.

For each check, specific test cases for regression, invariant, and smoke tests were designed
and implemented as Simulink models. These tests are executed continuously and in the
release build pipeline as Jenkins jobs. The check-specific test cases use a common test
framework and share a common structure. Each test case consists of eight sub-tests illus-
trated in Table 5. The resulting JUnit test report (cf. Figure 3) is provided as qualification
evidence in the MXAM ISO 26262 Qualification Kit.

Table 5: Common structure of the tests to qualify [UC_MXAM01] x [E_MXAM02]

a) elementResultsQualifierTest: Qualifiers (type of elements in the check results, such as
blocks, lines, etc.) of the elements occurring in the model check results are compared with
pre-defined expected results.

b) elementResultNameValuePairTest: Name value pairs (check-specific information in addi-
tion to the standardized attributes and values, such as name, path, message, etc.) occurring
in the model check results are compared with pre-defined expected results.

c) elementResultsPathTest: Path information occurring in the model check results is compared
with pre-defined expected results.

d) elementResultsResultTest: Verdict of the model check (failed, passed, warning) is compared
with pre-defined expected results.

e) elementResultResultMessageTest: Messages occurring in the model check results are com-
pared with pre-defined expected results.

f) elementResultsSizeCheckTest: Number of the elements results occurring in the model check
results are compared with pre-defined expected results.

g) invariantTest: Results occurring in the model check are compared in two separate analyses.

h) elementResultsNotWantedTest: Result occurring in the model check is not aborted.

Figure 3: JUnit test report to document the qualification of [UC_MXAM01] x [E_MXAM02] (Excerpt)

[E_MXAM07]: For the second malfunction [E_MXAM07], designated, guideline-agnos-
tic test cases have been developed to assess the correct application of parameters. For a
baseline version of MXAM, the correctness of the resulting MXAM analysis report has
been established manually. For subsequent versions of the tool, regression tests are con-
ducted (cf. Figure 4). With the help of an MXAM report differ, the MXAM analysis re-
ports resulting from a regression test are compared against the analysis reports from the
baseline version.

Figure 4: Set-up of system tests and resulting work products to document the qualification of [UC_MXAM01]
x [E_MXAM07].

In addition, 10 system tests covering different aspects of the usage of global, shared, and
check parameters were defined as well to qualify [UC_MXAM01] x [E_MXAM07] (cf.
Figure 5). These system tests are executed continuously and in the release build pipeline
as Jenkins jobs. The resulting Allure report (cf. Figure 5) is provided as qualification evi-
dence in the MXAM ISO 26262 Qualification Kit.

Figure 5: Allure report to document the qualification of [UC_MXAM01] x [E_MXAM07].

The guideline-specific tests and the system tests cover the two potential malfunctions used
as an example.

Overall, the MXAM ISO 26262 Qualification Kit addresses 17 combinations of use cases
and malfunctions that were rated as TCL2 or TCL3 in the tool classification.

3.4 User Activities and Savings

Using a tool-vendor-provided qualification kit can significantly streamline the user’s tool
classification and qualification activities. However, it does not exempt the tool user from
having to perform any further activities.

Using the example of the MES Model Examiner®, Figure 6 contrasts the classification
and qualification activities to be performed with (right-hand side) and without (left-hand
side) the MXAM ISO 26262 Qualification Kit and designates the activities that are being
streamlined by using such a kit.

As an example, instead of conducting the entire tool qualification, the user would only
need to review and confirm the validity of the documentation of the predetermined tool
qualification provided as part of the qualification kit. Regardless of who carries out tool
qualification, the user needs to ensure that actual tool usage complies with the constraints
and assumptions of tool classification and qualification (e.g., ensuring that the assumed
prevention and detection measures are conducted).

If user-created checks are being used, the check-specific qualification activities need to be
extended to these checks. As an example, the vendor-provided tests and reviews to qualify
([UC_MXAM01] x [E_MXAM02]) need to be augmented by similar tests and reviews for
the user-created checks.

Figure 6: Workshare of tool classification and qualification activities.

According to [CF14], the mean effort for tool qualification can be estimated at 80 hours.
If a qualification kit is used, the tool user is relieved of most of this effort if the tool usage
is sufficiently aligned with the vendor’s usage guidance and constraints. In this case, the
user’s effort is reduced to reviewing and confirming or adapting the pre-determined tool
qualification.

Potential savings for the tool user are much higher if the vendor-provided tool qualifica-
tion removes the need for the user to conduct certain recurring review activities (e.g. the
elimination of the recurring review of the parameter specification details [M_MXAM13]).

The MXAM ISO 26262 Qualification Kit provides the user with designated and flexible
Word and Excel templates for the required ISO 26262 classification and qualification
work products. User feedback indicates, that such templates are preferred to other availa-
ble solutions as they are easy to comprehend and adaptation to established, user-specific
workflows is straightforward.

4 Summary and Conclusion

Gaining confidence in the tools used to develop E/E systems via tool classification and
tool qualification is a base requirement for today’s development projects. Modern func-
tional safety standards, such as ISO 26262, call for these activities. The responsibility for
conducting these activities rests with the tool user. However, support from the tool vendor
can streamline the user activities.

Vendor-provided tool classification already reduces the effort for the user when evaluating
the confidence in the tool for the intended use cases. Instead of creating the entire classi-
fication, the user only needs to review and confirm or adapt the predetermined tool clas-
sification.

However, if the tool classification results in a TCL2 or TCL3 (medium or low tool confi-
dence) for some use cases, users need to apply additional prevention/detection measures
or must qualify the tool with respect to these use cases. For some use cases, sufficient tool
confidence (i.e., TCL1) can be reached by conducting additional review activities. For
other use cases, such additional activities might be infeasible or prohibitive due to high
complexity or effort. Tool qualification is the only option here.

Using the example of the MES Model Examiner®, this paper provides insight into the
structure and the qualification approach of an actual tool qualification kit for a popular
model-based analysis tool. The tool qualification kit utilizes the qualification method ‘val-
idation of the software tool’; validation is conducted by a combination of different tests
and reviews. Utilizing such a tool-vendor-provided qualification kit significantly reduces
the burden on the tool user by minimizing the actual qualification effort and also by re-
ducing the amount of prevention/detection measures they need to carry out.

Further research interests of the authors include a taxonomy of tool classification ap-
proaches, the provision of tool classification patterns, and further improvement of the uti-
lized classification and qualification templates.

References

[CF11] M. Conrad, I. Fey “ISO 26262 - Exemplary tool classification of Model-Based Design
tools”. Softwaretechnik-Trends 31 (2011) 3
http://pi.informatik.uni-siegen.de/stt/31_3/01_Fachgruppenberichte/ada/5-CF11-
11_20110803.pdf

http://pi.informatik.uni-siegen.de/stt/31_3/01_Fachgruppenberichte/ada/5-CF11-11_20110803.pdf
http://pi.informatik.uni-siegen.de/stt/31_3/01_Fachgruppenberichte/ada/5-CF11-11_20110803.pdf

[CF14] M. Conrad, I. Fey “Effort and Efficacy of Tool Classification and Qualification”. Proc.
MBEES X (2014)

[CF15] M. Conrad, I. Fey “Tool Classification & Qualification According to ISO 26262”. 4th Int.
CTI Conf. ISO 26262 (2015)

[CMR10] M. Conrad, P. Munier, F. Rauch “Qualifying Software Tools According to ISO 26262”.
Proc. MBEES VI (2010)

[Con10] M. Conrad “Software Tool Qualification According to ISO 26262 - An Experience Re-
port”. Supplementary Proc. of 21. Int. Symposium on Software Reliability Engineering
(ISSRE 2010), pp. 460-466 (2010)

[Con14] M. Conrad “Tool Classification and Qualification in Practice” 4th VDA Automotive SYS
Conference (2014)

[Con16] M. Conrad, I. Fey “Tool Classification Made Easy - The Making of an ISO 26262 Tool
Classification Kit”. MES User Forum 2016 (2016)

[CSM11] M. Conrad, G. Sandmann, P. Munier “Software Tool Qualification According to ISO
26262”. SAE 2011 World Congress, Detroit, MI, US, April 2011 (2011)
doi:10.4271/2011-01-1005

[DO330] DO-330:2011. “Software Tool Qualification Considerations”. RTCA (2011)
[Glö08] T. Glötzner “IEC 61508 Certification of a Code Generator”. ICSS2008 (2008)
[HK+11] R. Hamann, S. Kriso, K. Williams, J. Klarmann, J. Sauler “ISO 26262 Release Just

Ahead: Remaining problems and Proposals for Solutions”. SAE 2011 World Congress,
Detroit, MI, US, April 2011 (2011)

[ISO26262] ISO 26262:2011. “Road vehicles - Functional safety”. Int. Org. for Standardization
(2011-2012)

[KKG10] J. Klarmann, S. Kriso, M. Gebhardt “Qualification of development tools as per ISO
26262”. REAL TIMES, 1/2010, pp. 28-20 (2010)

[Ko18] S. Kohle “MES Model Examiner® Drive ISO 26262 Qualification Kit”. Model Engi-
neering Solutions GmbH, https://www.model-engineers.com/mxam.html (2018)

[Mai09] M. Maihöfer "Umgang mit Entwicklungswerkzeugen in Software-Entwicklungsprozes-
sen der Automobilindustrie - ISO DIS 26262, Band 8, Kapitel 11: Inhalt, Bewertung,
Auswirkung und Umsetzung (in German). EUROFORUM Konferenz 'Funktionale Si-
cherheit nach ISO/DIS 26262', Stuttgart, Germany, Sept. 2009 (2009)

[SCD+07] I. Stürmer, M. Conrad, H. Dörr, P. Pepper “Systematic Testing of Model-Based Code
Generators”. IEEE Transactions on Software Engineering, 33 (2007) 9
doi:10.1109/TSE.2007.70708

[SML08] S. Schneider, P. Mai, T. Lovric “The Validation Suite Approach to Safety Qualification
of Tools” Automotive - Safety & Security 2008 (2008)

[Spä14] A. Späthe “Den Nagel auf den Kopf zu treffen, reicht nicht - Carmeq führt die ISO-
26262-konforme Klassifizierung von Software-Werkzeugen ein“. meilenstein 2/2013,
pp. 14-15 (2013)
http://www.carmeq.com/downloads/Meilenstein-2-2013.pdf

[SS07] S. Schneider, O. Slotosch “A validation suite for Model-based Development Tools” 10.
Int. Conf. on Quality Engineering in Software Technology CONQUEST (2007)

[SWP+12] O. Slotosch, M. Wildmoser, J. Philipps, R. Jeschull, R. Zalman “ISO 26262 - Tool Chain
Analysis Reduces Tool Qualification Costs”. Automotive - Safety & Security 2012
(2012)

https://www.model-engineers.com/mxam.html
http://www.carmeq.com/downloads/Meilenstein-2-2013.pdf

cbe

(Hrsg.): Modellbasierte Entwicklung eingebetteter Systeme,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2017 1

Feature-based Recommendation for Product Configuration
in the Software Product Lines

Yibo Wang1, Lothar Hotz2, Matthias Riebisch3

Abstract: Software Product Line Engineering (SPLE) is a mature technique enabling companies to
create individual products in order to meet needs of different customers. In SPLE, Feature Models
are the widely used formalism to capture commonality and variability of all products. In Feature
Models, program functionalities or other user-visible aspects are represented as Features. In order to
configure a product, product line users (such as product managers) select desired features step by step
in the Feature Model. However, it is a challenging task in industrial settings, due to high numbers of
features and complex interdependency between features. Configuration support is required.

In this paper, we propose a similarity-based recommender system that provides online recommen-
dation during the user’s configuration process. Online means that the recommendation result is
based on the current feature selections (partial configuration) by the user. In addition, configurations
of all previous products are considered as further input data for the recommender system. Unlike
other similarity-based recommender systems, we use "Feature Implication" (it implies coexistence of
features in the previous configurations) to measure relations between features. A real case study shows
that our approach outperforms other state-of-the-art similarity-based approaches in recommendation
quality. In other words, it help users not only in finding the correct configuration, but also in making
decisions more efficient.

Keywords: Product Configuration; Recommender Systems; Software Product Lines

1 Introduction
Nowadays, mass customization helps companies to meet customer requirements at mass
production efficiencies. Software Product Lines Engineering (SPLE) is a mature technique
to realize it. SPLE makes it possible to create an individual product by assembling a set
of reusable assets. In the domain of SPLE, the Feature Model [Cz12] is one of the most
used formalisms, which captures commonality and variability among all products in terms
of Features. A Feature [Ka90] is defined as a "prominent or distinctive user-visible aspect,
quality, or characteristic of a software system or system". Configuration is one of the most
important activities to build an individual product from the product line. In the configuration
process, some features will be selected by product line users (followings as users), in order
to meet the individual requirements for a customer. But the configuration is more than
feature selections. It includes also other activities, such as setting of the feature parameters.

1 University Hamburg, SWK, Vogt-Kölln-Str.30, 22527 Hamburg, Germany, wang@informatik.uni-hamburg.de
2 HITeC, Vogt-Kölln-Str.30, 22527 Hamburg, Germany, hotz@informatik.uni-hamburg.de
3 University Hamburg, SWK, Vogt-Kölln-Str.30, 22527 Hamburg, riebisch@informatik.uni-hamburg.de

https://creativecommons.org/licenses/by-nc/3.0/
wang@informatik.uni-hamburg.de
hotz@informatik.uni-hamburg.de
riebisch@informatik.uni-hamburg.de

2 Yibo Wang, Lothar Hotz, Matthias Riebisch

However, there exist approaches that change feature parameters into a group of exclusive
features [KO14]. So we simplify the configuration as feature selections in this paper.

In industrial settings, a configuration is normally a complex task, because of high number of
features and complex feature inter-dependencies. Moreover, the configuration is a gradual
and iterative process. In each step some features will be selected (partial configuration).
Users often don’t have an overview of the whole configuration, due to lack of knowledge
about impacts of their feature selections. Thus, automatic support is required to give users
some guidances on the current feature selections. They exist in two forms: consistency
checking and feature recommendation. Consistency checking is a hard form of configuration
support. It ensures the validity of the current feature selections. It means that the feature
selections that lead to inconsistency are not permitted. On the contrary, recommendation is
a soft form. It provides only suggestions (e.g. "you should consider the feature ’X’, because
it exists in most of the previous configurations"). But these suggestions can be ignored. In
this paper, we concentrate on the recommendation part and show how to integrate it with
the existing consistency checking approaches (such as SAT solvers).

Fig. 1: Lenze configurator

In addition, our research is inspired by the Lenze configurator (Figure 1). In the configurator,
if some options have been decided ("GST" selected as Gearbox family), we ask if it is

Feature-based Recommendation 3

possible to provide suggestions for other options (recommend "GST06-2" as Gear type), in
consideration of the set of all available product variants?

[Pe16] follows the similar ideas to provide recommendations. The authors suggest to use the
standard recommenders, such as similarity-based Collaborative Filtering (in the following
referred to as CF) and Bias Regularized Incremental Simultaneous Matrix Factorization (in
the following referred to as BRISMF), because they provide better recommendation results
than other state-of-the-art ones. Our approach goes a step further by adapting the standard
recommendation algorithm CF to the specific problem, namely to the feature selection
problem.

The contributions are summarized as follows. First we propose a similarity-based feature
recommender system, by using "Feature Implication" derived from previous configurations
to generate recommendations. Second, we design a tool support by extending a state-of-
the-art recommender system. Last but not least, we evaluate the tool (in precision/recall
and run time) with a real-world data set. The results show that it provides more precise
recommendation results than the traditional similarity-based approaches.

2 Background
2.1 Product-Line Engineering

SPLE defines two main processes, namely the Domain Engineering and the Application
Engineering. The Domain Engineering consists of the activities such as domain analysis,
setting up feature model and preparation of reusable assets. The Application Engineering
consists of the activities like requirements analysis, product configuration and product
generation and integration.

A Feature Model consists of the feature diagram [Ka90] and other additional information
such as Cross-Tree Constraints. A feature diagram is a graphical tree-like representation
that shows the hierarchical organization of features (such as "mandatory", "optional" and
"feature groups"), while Cross-Tree Constraints define relations among hierarchical not
directly connected features (such as "requires" and "excludes"). The Feature Constraint
is a generic term that refers to any type of existing feature relationship among features
(hierarchical relationship plus cross-tree constraints). A configuration with respect to a
given Feature Model is represented as an arbitrary combination of features. A configuration
is valid in respect of a Feature Model, if and only if all the Feature Constraints are hold. In
the Application Engineering, users must choose which features they want to have for an
individual product. In this context, this decision process is also referred to as configuration.

2.2 Recommender Systems

Recommender Systems provide personalized recommendations for users in making deci-
sions. According to the type of information available for making recommendations, they

4 Yibo Wang, Lothar Hotz, Matthias Riebisch

can be divided into 3 groups: Collaborative, Content-based and Knowledge-based recom-
mendation. Collaborative recommendation approaches exploit information about the past
behaviour or the opinions of an existing user community for predicting which items the
current user will most probably interested in [Ja10]. While Content-based approaches are
based on the availability of item descriptions and a profile that assigns importance to these
characteristics, Knowledge-based approaches exploit additional and means-end knowledge
such as constraints to generate recommendations [Ja10].

Collaborative recommendation is the most researched and used recommendation approaches
in the recent years. User-based Collaborative Filtering (CF), item-based CF and Matrix
factorization are the most important recommendation techniques in this category. The
first two approaches calculate recommendations directly from the user-item ratings. While
user-based CF compute recommendations using the similarity between users, item-based
CF makes use of the similarity between items. Item-based CF is more apt for offline
preprocessing and large-scale problems. Unlike CF, Matrix Factorization (MF) approaches
must firstly learn from the user-item ratings and then uses the learned model (latent factors)
to make predictions. In general, CF approaches provide more precise results than MF
approaches, because the full ratings are used for generating the recommendations [Ja10].

3 The proposed approach

3.1 Configuration Process with Recommendation Support

Fig. 2: Configuration process with recommendation support

To start with the configuration process, users should select/deselect features in a configurator
(such as EngCon [Kr13], pure::variants [Be08], or FeatureIDE [TKB14]), according to

Feature-based Recommendation 5

their individual requirements. The configurator presents the feature model graphically and
enables interaction with users. The feature selections could lead to some changes in a
configuration. Then, its validity will be checked by the constraint solver. If it is invalid,
incorrect feature selections will be shown in the configurator and should be corrected by
users. Otherwise, the feature propagator starts to propagate the user’s selections onto other
features. The current configuration after feature propagation (the lower part of Figure 2)
becomes one part of the input for the recommender. The other part (the upper part of
Figure 2) comes from the matrix transformation of previous configurations (more details
in the following sections). Finally, the recommendation results will be generated by the
recommender and given to users. Thus, the recommendations will be considered in the
further configuration iterations.

3.2 Choosing Recommender Techniques

In our approach, one input for the recommender system are previous configurations. They
are very similar to user-item ratings in the similarity-based collaborative filtering approaches.
Thus, we initially choose Collaborative Filtering (in the following referred to as CF) as
our recommender technique. Because of poor scalability in processing large numbers
of configurations in the user-based CF, our approach is based on the item-based CF. In
addition, we don’t use Matrix Factorization techniques (such as BRISMF in [Pe16]) to
improve the recommender, due to its poor performance in respect of run time (waiting time
of over 30 seconds to generate a recommendation), In realistic scenarios, users should get a
recommendation instantly after the current configuration step.

3.3 Formal Definition

In this section, we describe the formal representation of a configuration and definitions
for feature recommendation. We follow the basic definitions in [Pe16] and make some
amendments and extensions.

A feature model FM = (F, R) consists of a tuple of feature states F= {−1,0,1}h and a
set of feature constraints R = {r1,r2, . . . ,rm}, where h is the number of features and m the
number of constraints. A feature has the state 1 if it has been selected (positive decided);
-1 if it has been deselected (negative decided); 0 if it is has not been decided (undecided).
A configuration~c for a given feature model FM is a tuple of states for all features, more
formally as~c = { f1, f2, . . . , fh}. A configuration is complete, iff each feature has a decided
state (state= -1 or 1). A configuration is partial, iff it is not complete. In other words, it
still has some features in undecided states (state=0). According to their states, features in a
configuration can be divided into 3 groups: PD (positive decided), ND (negative decided)
and UD (undecided), such that PD ∩ ND ∩ UD = /0 and PD ∪ ND ∪ UD = ~c. Previous
configurations (in the following referred to as PC) are a collection of valid configurations
from all existing products. In our work, it is represented as a matrix of n rows h columns,

6 Yibo Wang, Lothar Hotz, Matthias Riebisch

where n is the number of previous configurations and h the number of features. Thus, each
row represents an existing configuration.

PC =

pc11 pc12 . . . pc1h
...

...
. . .

...
pcn1 pcn2 . . . pcnh

 (1)

Besides feature constraints directly defined in the feature model, additional feature relations
could also be derived from PC. We call this type of feature relations as feature implication.
Given two features fx and fy, it gives a hint on how likely fy should also be selected, if
fx has been selected [Ma14]. It is also known as the confidence between two items in the
Market Basket Analysis [TSK05]. The feature implication is reflexive and asymmetric.
More formally, it is defined as4:

con f idence (fx
is given→ fy) =

| fx and fy|
| fx|

(1)

The formula in the numerator counts the number of configurations in PC, which have both
fx and fy, while the formula in the denominator counts the number of configurations which
have only fx. The calculated confidence is a rational number between 0 and 1. Depending
on its value, feature implication takes on different meanings, as described in table 1.

Tab. 1: Meaning of confidence

confidence (fx→ fy) = 0 If fx is selected, fy is never selected.
0 < confidence (fx→ fy) < 1 If fx is selected, fy is sometimes selected.
confidence (fx→ fy) = 1 If fx is selected, fy is always selected.

We use implication matrix I to record pairwise implication relation between all features.
It is a square matrix with n rows and h columns, where h is the number of features. The
element I(fx, fy) in the row x and the column y represents the feature implication from fx
to fy, as stated in formula (1). In this way, implication matrix I can be transformed from
previous configurations PC directly. As stated before, it constitutes an important input for
the recommender.

3.4 Calculation of Recommendations

In the configuration process, recommendation would help users to make decisions on the
undecided features. We calculate recommendation for the undecided features based on
the user’s current configuration and the previous configurations PC. More formally, given
the feature sets PD (positive decided), ND (negative decided) and the implication matrix

4 We changed “given” from [Ma14] to “is given” because fx is selected and fy is computed from this input.

Feature-based Recommendation 7

I, recommendation score for each feature fUD ∈ UD (undecided) will be calculated as
followings:

score(fUD) = ‖
∑

fPD∈PD
I(fPD, fUD)

|PD| −
∑

fND∈ND
I(fND, fUD)

|ND| ‖ (2)

In the RHS of formula (2), the first part is the average feature implication from all positive
decided features to the undecided feature. The second part is the average feature implication
from all negative decided features to the undecided feature. The recommendation score
is the absolute value of difference between the two parts. Its value is between 0 and 1.
It reflects the relation from all decided features to the undecided feature. We can get the
recommendation results based on it.

3.5 Implementation

We use the standard Apache-framework mahout5 to implement the proposed recommender
system, because it is open-source and flexibly extensible. The state-of-the-art SAT-solver
SAT4J6 is selected as our reasoning library to perform consistency checks. For the front-
end, we are integrating our recommender with the product line configuration framework
FeatureIDE[TKB14].

4 Evaluation
We evaluate our approach in light of its improvements for feature recommendation, in
comparison to other traditional similarity-based CF recommenders. More precisely, we
compare the recommendation results achieved from our approach, with those from the used-
based CF recommender (in the following referred to as user-CF) and from the item-based
recommender (in the following referred to as item-CF).

4.1 Configuration Datasets

We use the first dataset7 from [Pe16] as previous configurations PC. It is a real-world data
set with 170 previous configurations. The feature model is composed of 1652 features and
provides a high-level representation of a product line in the business management content
for a company. The configuration process is performed as customization of a specific
product for each employee.

4.2 Experiment Design

To generate recommendations, the parameters for the user-based CF recommender (table 2)
are set to the same values as those in [Pe16], because they are optimized for this data set.
5 Recommender engine, https://mahout.apache.org/users/recommender/recommender-documentation.html
6 SAT-solver, http://www.sat4j.org/
7 ERP System under http://wwwiti.cs.uni-magdeburg.de/~jualves/PROFilE/#datasets

http://wwwiti.cs.uni-magdeburg.de/~jualves/PROFilE/#datasets

8 Yibo Wang, Lothar Hotz, Matthias Riebisch

Tab. 2: Parameter values for different recommenders

Recommender Parameter ERP System

user-CF τ 0.000001
similarity measure Jaccard Index

item-CF similarity measure Jaccard Index
our approach similarity measure Feature Implication

The difference between our approach and the traditional item-based recommenders is that
we use feature implication as similarity measure. In the data validation phase, we separate
the configurations in PC into a training set and a test set, according to the Leave-one-out
cross-validation (LOOCV) method. That is to say, the data validation iterates over all
configurations. In each iteration, the following steps are performed:

1. A configuration is left out from PC and is put into the test set (it is called the test
configuration);

2. The remaining configurations in PC are put into the training set (it is called the
training configurations);

3. Part of the test configuration is copied to the current configuration;
In this step, we also simulate the progress of a user in the configuration process
and give gradually (stepwise 10%) parts of the test configuration to the current
configuration.

4. Recommendations are generated based on the current configuration and the training
configurations;

5. The generated recommendations are compared with the test configuration;
6. Results are evaluated against metrics of precision, recall and F-measure at ω .

ω is the number of permitted recommendations for a recommender. It is set to 10 as
in [Pe16].

Let relevant features be the features that are both in the recommendation results and
selected in the test configuration. Precision is the fraction of relevant features among all
recommended features. Recall is the fraction of relevant features over the total amount of
selected features in the test configuration. F-Measure combines the metrics precision and
recall as followings:

F-Measure = 2•Precision•Recall
Precision+Recall

4.3 Experimental Results and Discussion

We execute the experiments with the aforementioned 3 recommenders on 9 completeness
levels. For each combination, we evaluate the recommender with the average results of
10 runs to avoid bias. All the experiments were performed on a computer with Quad
Core@2.90 GHz CPU and 16 GB RAM, running on Windows 7.

Feature-based Recommendation 9

Because of space limitation, in Table 3 we show only three results on the completeness levels
10%, 50%, and 90%. The Figure 3 presents the achieved F-Measures and run times taken
by 3 recommenders, each with the increasing completeness of the current configuration.

Tab. 3: Evaluation results in F-Measure, Precision, Recall and Run time

Completeness of
configuration Recommender F-Measure Precision Recall Run time (in

seconds)

10%
user-CF 0,2126 0,8941 0,1207 5
item-CF 0,1839 0,8888 0,1026 4

Our approach 0,2047 0,9129 0,1152 4

50%
user-CF 0,3267 0,8876 0,2002 11
item-CF 0,3050 0,8859 0,1842 14

Our approach 0,3251 0,8976 0,1985 16

90%
user-CF 0,5351 0,5946 0,4864 13
item-CF 0,5588 0,6220 0,5073 21

Our approach 0,6332 0,7214 0,5643 24

(a) F-Measure (b) Run time in seconds

Fig. 3: Evaluation results
We make the following observation:
- Our approach outperforms the traditional item-based CF in F-Measure at all completeness
levels.
- Our approach outperforms the traditional user-based CF in F-Measure from the 60%
completeness level.
- Our approach has the longer run time than the user-based CF, while it remains comparable
with the item-based CF at all completeness levels.

In general, the results show that feature implication helps to find more precise recommenda-
tions. This tendency becomes more clear, as the completeness of the current configuration
increases. It means our approach will generate better recommendation results in the later
phases of a configuration. In addition, recommendations are generated by our approach at a

10 Yibo Wang, Lothar Hotz, Matthias Riebisch

comparable speed by the traditional item-based CF one. However, it is more slower than
the user-based CF recommender. We plan to evaluate our approach with a bigger dataset to
investigate this finding.

5 Related work
- Configuration guidance
[Fe10] presents an configuration environment that supports personalised configuration
of mobile phones. It integrates recommendation techniques (such as similarity-based
ranking) with knowledge-based configuration (such as consistency checking). However,
the investigated configuration problems are relative simple, in comparison to the problems
in the software product lines. [BE13] develops a mechanism that stakeholders are able to
identify the utility of each feature of the product line by answering gamble questions. The
advantage of this approach is that it does not need to have any information about existing
configurations. But the interaction costs with users are increasing exponentially.

- Configuration optimization
[HP15] augments multi-objective search-based optimization with constraint solving, in
order to find the optimal configuration efficiently. [Hi16] improves the approach by optimis-
ing first on the number of constraints that hold and then on the other objectives. Although
optimization provides precise results in configuration support. But in general, it demands a
high computation cost and can not provide an understandable explanation for the results.

- Quality aware Feature Model Configuration
[ZYL10] proposes an Analytic Hierarchical Process (AHP) based approach to calculate
the relative importance of each feature on a quality attribute. They use these importance
values to estimate the impact of feature selections on a quality attribute. [TLL14] proposes
an improvement by replace AHP with ELO rating system. [SSPS10] extends the traditional
SPLE with a feedback approach in order to improve the configuration of NFPs. The
estimation of quality attributes for a configuration is based on the measurement results on a
generated testing set. A similar idea is also followed by [Si11]. Unlike our approach, these
approaches utilize either the experts’ knowledge or the measurements on a small test set to
generate estimation.

6 Conclusion and future work
In this paper, we extend the traditional item-based recommender with "feature implication"
as a customized similarity measure. Results show that "feature implication" helps to get
more precise recommendation results than other similarity-based approaches.

In the next step, we will categorize recommendation types and evaluate them with a more
complex data set. Then, the integration with the consistency checker will be implemented.
Other recommendation possibilities, such as configuration sequences, will be investigated
later.

Feature-based Recommendation 11

References
[Be08] Beuche, Danilo: Modeling and building software product lines with pure::variants. Pro-

ceedings - 12th International Software Product Line Conference, SPLC 2008, p. 358,
2008.

[BE13] Bagheri, Ebrahim; Ensan, Faezeh: Dynamic decision models for staged software product
line configuration. Requirements Engineering, 19(2):187–212, 2013.

[Cz12] Czarnecki, Krzysztof; Grünbacher, Paul; Rabiser, Rick; Schmid, Klaus; Wa̧sowski, An-
drzej: Cool features and tough decisions. In: VaMoS ’12 The 6th International Workshop
on Variability Modeling of Software-Intensive Systems. ACM Press, New York, New
York, USA, pp. 173–182, 2012.

[Fe10] Felfernig, Alexander; Mandl, Monika; Tiihonen, Juha; Schubert, Monika; Leitner, Ger-
hard: Personalized user interfaces for product configuration. In: Proceedings of the 15th
international conference on Intelligent user interfaces - IUI ’10. ACM Press, New York,
New York, USA, p. 317, 2010.

[Hi16] Hierons, Robert M; Li, Miqing; Liu, Xiaohui; Segura, Sergio; Zheng, Wei: SIP: Optimal
Product Selection from Feature Models Using Many-Objective Evolutionary Optimization.
ACM Transactions on Software Engineering and Methodology, 25(2):1–39, April 2016.

[HP15] Henard, Christopher; Papadakis, Mike: Combining multi-objective search and constraint
solving for configuring large software product lines. In: ICSE’ 15 Proceedings of the 37th
International Conference on Software Engineering. pp. 517–528, 2015.

[Ja10] Jannach, Dietmar; Zanker, Markus; Felfernig, Alexander; Friedrich, Gerhard: Recom-
mender Systems. Cambridge University Press, Cambridge, 2010.

[Ka90] Kang, K.; Cohen, S.; Hess, J.; Novak, W.; Peterson, S.: Feature-Oriented Domain Analysis
(FODA) Feasibility Study. Technical Report CMU/SEI-90-TR-021, 1990.

[KO14] Karatas ,̧ Ahmet Serkan; Oguztuzun, Halit: Attribute-based variability in feature models.
Requirements Engineering, pp. 185–208, 2014.

[Kr13] Krebs, T.: EngCon. In (Felfernig, A.; Hotz, L.; Bagley, C.; Tiihonen, J., eds): Knowledge-
based Configuration – From Research to Business Cases, chapter 23, pp. 337–346. Morgan
Kaufmann Publishers, 2013.

[Ma14] Martinez, Jabier; Ziadi, Tewfik; Mazo, Raul; Bissyande, Tegawende F.; Klein, Jacques;
Traon, Yves Le: Feature Relations Graphs: A Visualisation Paradigm for Feature Con-
straints in Software Product Lines. In: 2014 Second IEEE Working Conference on
Software Visualization. IEEE, pp. 50–59, sep 2014.

[Pe16] Pereira, Juliana Alves; Matuszyk, Pawel; Krieter, Sebastian; Spiliopoulou, Myra; Saake,
Gunter: A feature-based personalized recommender system for product-line configuration.
i, ACM Press, New York, New York, USA, pp. 120–131, 2016.

[Si11] Siegmund, Norbert; Rosenmüller, Marko; Kuhlemann, Martin; Kästner, Christian; Apel,
Sven; Saake, Gunter: SPL Conqueror: Toward optimization of non-functional properties
in software product lines. Software Quality Journal, 20(3-4):487–517, jun 2011.

12 Yibo Wang, Lothar Hotz, Matthias Riebisch

[SSPS10] Sincero, Julio; Schröder-Preikschat, Wolfgang; Spinczyk, Olaf: Approaching non-
functional properties of software product lines: Learning from products. Proceedings -
Asia-Pacific Software Engineering Conference, APSEC, pp. 147–155, 2010.

[TKB14] Thüm, T; Kästner, C; Benduhn, F: FeatureIDE: An extensible framework for feature-
oriented software development. Science of Computer Programming, 79:70–85, 2014.

[TLL14] Tan, Lei; Lin, Yuqing; Liu, Li: Quality Ranking of Features in Software Product Line
Engineering. In: 2014 21st Asia-Pacific Software Engineering Conference. volume 2.
IEEE, pp. 57–62, dec 2014.

[TSK05] Tan, Pang-Ning; Steinbach, Michael; Kumar, Vipin: Introduction to Data Mining, (First
Edition). Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 2005.

[ZYL10] Zhang, Guoheng; Ye, Huilin; Lin, Yuqing: Quality attributes assessment for feature-based
product configuration in software product line. In: Proceedings - Asia-Pacific Software
Engineering Conference, APSEC. pp. 137–146, 2010.

cbe

Herausgeber et al. (Hrsg.): Modellbasierte Entwicklung eingebetteter Systeme,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2017 11

Feature-oriented Domain-specific Languages

Philipp Ulsamer1, Tobias Fertig2, Peter Braun3

Abstract: Domain-specific Languages (DSL) describe applications of particular domains
that can be understood by domain experts. However, common users have to learn a new
domain language. Moreover, developing similar software products from scratch is a time
consuming and tedious task. Therefore, we developed an internal DSL to describe RESTful
systems. In order to use that one must have very good knowledge about REST. Feature
models are a common paradigm in Product Line Engineering to represent the features
of the products as reusable parts. They can be easily communicated with customers.
That is why we have extended our approach with a model-to-model transformation. This
transformation provides a model for an underlying REST generator. While a model-to-code
(M2C) generator is developed domain-specific, excluding expansion by a new domain,
our approach is to make it more efficient than developing a M2C generator for every
single domain. So that non-experts can configure REST solutions by using feature models
without knowledge of REST.

Keywords: MDSD; DSL; REST; Hypermedia; RESTful; SPL; Domain Engineering; Feature
Modeling; Model Transformation; M2M

1 Introduction

Model manipulation plays the central role in Model-Driven Engineering. In 2015 we
presented our project Generating Mobile Applications with RESTful Architecture
(GeMARA) [SB15] in which we proposed a model-driven approach for creating
RESTful APIs. For the purpose of focusing on a particular domain, we developed
an external Domain-specific Language (DSL) using the Eclipse plugin Xtext [EB10]
for defining the grammar of the DSL and the programming language Xtend [Be13]
to implement the software generator. The limited expressiveness and the fluency
from combined individual expressions, and the domain focus makes our DSL easy to
be understood by domain experts [Fo10]. However, there are several shortcomings.
A user has to learn a new language which requires considerable time to learn.

1 Univesity Of Applied Science Wuerzburg-Schweinfurt, FIW, Sanderheinrichsleitenweg 20, 97074
Wuerzburg, Germany philipp.ulsamer@fhws.de

2 Univesity Of Applied Science Wuerzburg-Schweinfurt, FIW, Sanderheinrichsleitenweg 20, 97074
Wuerzburg, Germany tobias.fertig@fhws.de

3 Univesity Of Applied Science Wuerzburg-Schweinfurt, FIW, Sanderheinrichsleitenweg 20, 97074
Wuerzburg, Germany peter.braun@fhws.de

https://creativecommons.org/licenses/by-nc/3.0/
philipp.ulsamer@fhws.de
tobias.fertig@fhws.de
peter.braun@fhws.de

12 Philipp Ulsamer, Tobias Fertig, Peter Braun

Also, developing, evolving, and maintaining complex external DSLs requires signifi-
cant effort. As our project matured, we switched to an internal DSL using Java as
the General Purpose Programming Language (GPL) [SB15].

Product Line Engineering (PLE) has the goal of developing software systems from
reusable parts instead of developing them from scratch [Ap13]. The feature-oriented
approach was originally proposed as part of the Feature-Oriented Domain Analysis
(FODA) method [Ka90]. The main idea is to express every product configuration on
a higher level of abstraction using the feature models paradigm. While development
is easier to implement by Java developers, the knowledge of REST is indispensable
to understand the domain in our GeMARA project.

We address this problem by extending this approach with a model-to-model (M2M)
transformation. Features of a given feature model will be transformed to a RESTful
finite-state machine (ε-NFA) [ZBD11]. Connecting those features will lead to an
ε-NFA that represents a valid specification of the product. Using M2M transfor-
mation allows less experienced users to define their product using feature-based
configuration files. Therefore, the user will not need any knowledge about describing
RESTful systems as ε-NFAs. Additionally, the automatic generation of program
code by a generator is characteristic of generative programming. This automatic
generation is also known as model-to-code (M2C) transformation. In order to carry
out an M2C transformation, a generator must be developed for each individual
domain, the development effort which is always different and thus represents a
time-consuming task. The M2M transformation provides a model for the underlying
REST generator in GeMARA, which performs a model transformation on the
incoming feature model. This facilitates the addition of various forms of a domain
and their maintenance.

First, we will summarize related work and confirm that feature modeling used as an
abstraction in hypermedia for M2M transformation is a missing task. Afterwards
we will discuss challenges of using REST in model transformation. Furthermore,
we will propose our approaches for solving these challenges. Finally, we will give a
short outlook and discuss our future work.

Feature-oriented Domain-specific Languages 13

2 Related Work

Voelter and Viser propose the method of using DSLs in PLE [VV11]. They show how
DSLs can fill the gap between feature modeling and programming languages, when
a feature model exceeds its limit. Expressing complex features in their behavior to
each other is not possible with feature models. Feature models can be used to select
among a set of few predefined behaviors, composition rules or rationale in FODA
[Ka90]. Picturing all possible behaviors would lead to a confusing feature model.
In order to fix this issue, the behavior could be implemented in a GPL that would
lower the abstraction that feature models offer, reducing the understandability, as
well as the possibility for non-programmers to participate. DSLs can counteract
and be the mediator between the composition rules and the lack of restrictions
of a GPL. A missing topic is the abstraction via M2M transformation. While the
transformation of models is under the control of the domain engineer when working
with DSLs we need to lighten the usage of the DSL.

Cuadrado and Molina deal with embedded DSLs and its model transformation in
their work. [CM07] A key aspect of MDSD is Metamodeling, which defines the
abstract syntax of a DSL. Since graphical editors are the most favorable way to
define Metamodels, developing one is a time-consuming task. Nevertheless, they
propose a M2M transformation approach transforming a UML model into a Java
model. Our approach focuses on feature models to grant a certain degree of reuse
of our features. For a definition of a new feature selection, you only have to choose
between a preconfigured set of allowed feature combinations instead of defining a
UML for each selection.

3 GeMARA

The goal of our research project is to develop automated Generators for distributed
Mobile Applications based on RESTful Architecture (GeMARA) by providing a
model-driven approach. Accordingly, applications are no longer described as source
code, but as an abstract model from which source code and other artifacts are
generated.

We proposed our approach in 2015 in [SB15]. Back then we were able to generate
RESTful APIs including the persistence layer. Our generators were written with
Xtext [EB10] and Xtend [Be13]. However, as our project matured, the maintenance
of our generators got a more and more time consuming task. Therefore, we cut loose
from Xtext and Xtend and developed our own internal DSL in Java. The new DSL
describes RESTful Systems as finite state machines (ε-NFA) according to Zusak et
al. [ZBD11]:

14 Philipp Ulsamer, Tobias Fertig, Peter Braun

States are defined by the HTTP Verb and the resource. Transitions define the
hypermedia links. Secondary States are defined by the HTTP verb, the resource
and the subresource. Secondary States can be used to describe relations between
resources, for example between users and their addresses.

We can generate every RESTful System described as ε-NFA. By now we have
also generators for Android applications and Polymer frontends. Moreover, we are
generating test cases for the RESTful API [FB15] and Hypermedia Tests [VFB17].
The generated source code can be deployed out of the box. However, sometimes
manual adjustments are necessary. Those are also supported by our approach using
dependency injection.

4 Challenges

MDSD is a discipline in software engineering to generate source code from an
abstract model [SVC06] to successfully develop, evolve and maintain software.
Instead of using a GPL to generate code with a set of statements, conditions and
loops, MDSD abstracts the development on a higher level. While models are only
useful if they provide a better understanding of the software system, the same
applies to their graphical representation (e. g. UML) [MV06]. However, a feature
model consists not only of a feature diagram, but also of the additional information
relevant to the project. Thus, a brief description of the features is necessary for the
later understanding. Also, boundary conditions and priorities are documented (e. g.,
to express the interest of the stakeholders or customers in a certain future) [Ka90].
In our work we will match all these conditions in our GeMARA model in order to
reduce effort and complexity involved in the development and adoption process.

Unfortuantely, developers are required to have programming skills and a thorough
understanding of the principles of REST in order to develop models within our
project GeMARA [SB15], which leads to complexity in our domain engineering
process. In order to eliminate this problem, we will abstract every ε-NFA [ZBD11]
that represents a valid specification of the product into a named feature. A domain
users job is only to select a valid feature selection to generate a product. Therefore,
the user does not need any knowledge about describing RESTful systems as ε-NFA.

The model transformation process is the emphasis of our approach. In order to
perform a M2C transformation, we need to develop a generator for every single
domain, whose development effort is always different, indeed a time-consuming
task. With M2M transformation we will provide a model for our underlying REST
generator that performs model transformation for every incoming domain model.
Furthermore, the risk is that templates becomes bulky in scope in some target
architectures or languages. From a certain complexity of the transformations and
abstraction of the output model a M2M transformation is indispensable.

Feature-oriented Domain-specific Languages 15

5 Feature & REST Modeling

A feature is a domain abstraction and represents requirements, similiarities or
differences of program variants and serves as a means of communication between
stakeholders and developers [Ap13]. A feature diagram is a graphical representation
of all possible and valid feature configurations of a specific domain. It consists of
mandatory, optional, alternative and logical-OR features and other requires rules. As
can be seen in Figure 1, the feature Events with all its subfeatures and dependencies
as an abstract from the feature model of the domain martial arts academies is
displayed.

Instead of pursuing a procedure of developing an internal or external DSL with its
own grammar, a model transformation is used to derive a DSL that can only be
reduced to a selection of features and specification of meta information. There is no
special knowledge about REST needed for the use of the model.

Events

Teaching Belt Exam Seminar

Time Management Member Signation

Regular Dates Special Dates

Mandatory Alternative

Optional Or

Fig. 1: Feature selection of the domain martial arts academies.

While GeMARA is based on REST, the selected feature model must also be mapped
into REST in order to be able to transform. We created an abstract model of the
technical domain of REST based on our understanding of Fieldings constraints
[Fi00]. The GeMARA model has one dispatcher state and multiple application
states for all CRUD operations. The dispatcher state represents the initial state of
the ε-NFA. Every application state is defined by an HTTP verb and a resource. A
client can navigate from one application state to another via transitions, which is
defined by hyperlinks. Figure 2 shows the state transition diagram of the feature
Events.

16 Philipp Ulsamer, Tobias Fertig, Peter Braun

Start Dispatcher

GET Events GET Event

DELETE Event

PUT Event

POST Event

Fig. 2: Example of a ε-NFA of the resource Event.

We put a new domain model on top of the technical REST model. Every feature
in a domain model is represented as an ε-NFA using the given feature type by
the feature model. A feature type represents which HTTP verbs are supported for
every required resource. This allows the creator of the domain to limit the CRUD
operations that can be used on a resource. Thus, a feature of a valid feature selection
may have multiple resources. These are usually generated separately from each
other. With the help of Secondary States, the ε-NFA of the resources are linked
together in order to be able to fully describe a feature.

6 Model Transformation

Our M2M transformation consists of two steps. Firstly, the domain developer has
to provide a feature factory and a feature validator for their domain. Secondly, the
user has to define the required features within a YAML file.

Our generic implementation parses the YAML file and uses the given feature
validator of this domain. If the configuration of the user passes the validators
tests it can be transformed into a GeMARA model. The tests checks whether the
combination of mandatory, optional and alternative features is valid. Therefore, the
transformer translates the YAML file into an internal representation of features.
The feature factory of the developer is used within this step. The developer has to
define the ε-NFA for every feature a user can define in his feature factory.

We divided the transformation process into three steps: resource, state and transition
transformation. Our Transformer uses the generic sub-transformers to create a
GeMARA model that can then be used to generate the RESTful System. (see
Figure 3).

Feature-oriented Domain-specific Languages 17

Feature Factory

Feature Validator

Domain Model Feature-Model

Main Transformer
(R,S,T)

GeMARA Model

Fig. 3: Feature-oriented approach of a model transformation

In order to work with the DSL, the user has to know defined rules for the feature
selection. A list of features and their detailed description can be found in the domain
dictionary. In a YAML text document, the user defines only a selection of features
that he would like to have in his RESTful system and must also provide database
information (Listing 1).

featureList:
- Events
- Teaching
- Member Signation
- [...]

databaseName: Lee
databaseHost: localhost
databaseUserName: user
databasePassword: 1234

List. 1: Example of a feature selection in YAML for the domain Martial Arts Academy

Afterwards, the correct YAML document, the feature factory, and the validator for
the domain have to be selected for the model transformation (Listing 2).

domainModel = new domainModel();
gemaraModel = domainModel.setYamlPathName("xyTest.yaml")

.setFeatureFactory(new xyFeatureFactory())

.setValidator(new xyValidator())

.build();
final ModelGenerator modelGenerator = new ModelGenerator(gemaraModel);
modelGenerator.generate();

List. 2: Generation of a RESTful system of the domain Martial Arts Academy

18 Philipp Ulsamer, Tobias Fertig, Peter Braun

7 Discussion

Our vision is to generate RESTful Systems that can be configured by users who
are less experienced in programming or REST. Feature models have been shown to
be generally understandable, to illustrate functions, their similarities, differences
and restrictions. By configuring different models, reuse is possible because many
features are mandatory components of each product.

Previously, we had to develop the resources, states and transitions separately. The
model transformation allows us to draw their development to a higher level of
abstraction that they can be generated. This can reduce manual implementations as
well as repetitive routine tasks that would normally occur in an M2C approach. In
addition, the development effort of a transformation in its extension is much more
efficient than code generation. Not only does the domain model allow additional
domains to be modeled by a few lines of code, because most of the components of
the model transformation can be reused, but the variability of the feature model
provides a multitude of possibilities, such as the user of a domain by specifying a
feature selection, it can generate a complete RESTful System. A similar development
with the M2C transformation would require the development of code generators for
each domain. This would also be more time consuming than our approach.

The abstract representation of a model transformation not only makes the devel-
opment of a domain model simpler, but also its use. The transformation from the
domain model to a GeMARA model simplifies the generation of a RESTful System
by only having to make a selection of features after a specific domain policy. The
feature-oriented DSL only requires the user to enter a list of features in a YAML
text document and to provide additional meta-information.

8 Outlook

The development of an M2M transformation has shown that a higher level of
abstraction can automate many recurring tasks. Even if its enhancement requires
less implementation than an M2C transformation, defining features in a Feature
Factory of the domain model is still a time-consuming but undemanding task. In
turn, a code generator could be written that generates the information for a feature,
its resources and attributes. Also, for the development of the Feature Validator of a
domain, a separate DSL could be written to simplify and streamline statements
related to the constraints of a feature model and minimize error proneness. Thus,
the extension of a domain could also be reduced to a few lines of code. Finally,
language workbenches are becoming more and more powerful and user friendly
[Fo05]. Their development and offer to tools far exceeds the current development of
DSLs. Future work will focus on M2M transformation using language workbenches
for our RESTful systems.

Feature-oriented Domain-specific Languages 19

References

[Ap13] Apel, S.; Batory, D.; Kstner, C.; Saake, G.: Feature-Oriented Software
Product Lines: Concepts and Implementation. Springer Publishing Com-
pany, Incorporated, 2013.

[Be13] Bettini, L.: Implementing Domain-Specific Languages with Xtext and
Xtend. Packt Publishing, 2013.

[CM07] Cuadrado, J. S.; Molina, J. G.: Building Domain-Specific Languages for
Model-Driven Development. IEEE Software 24/5, 2007.

[EB10] Eysholdt, M.; Behrens, H.: Xtext: Implement Your Language Faster Than
the Quick and Dirty Way. In: Proceedings of the ACM International
Conference Companion on Object Oriented Programming Systems Lan-
guages and Applications Companion. OOPSLA ’10, ACM, Reno/Tahoe,
Nevada, USA, pp. 307–309, 2010.

[FB15] Fertig, T.; Braun, P.: Model-driven Testing of RESTful APIs. In: Pro-
ceedings of the 24th International Conference on World Wide Web
Companion. WWW ’15 Companion, International World Wide Web
Conferences Steering Committee, Florence, Italy, pp. 1497–1502, 2015.

[Fi00] Fielding, R.: REST: Architectural Styles and the Design of Network-based
Software Architectures, Doctoral dissertation, University of California,
Irvine, 2000.

[Fo05] Fowler, M.: Language Workbenches: The Killer-App for Domain Specific
Languages?/, 2005, URL: http://www.martinfowler.com/articles/
languageWorkbench.html.

[Fo10] Fowler, M.: Domain Specific Languages. Addison-Wesley Professional,
2010.

[Ka90] Kang, K. C.; Cohen, S. G.; Hess, J. A.; Novak, W. E.; Peterson, A. S.:
Feature-Oriented Domain Analysis (FODA) Feasibility Study, tech. rep.,
Carnegie-Mellon University Software Engineering Institute, Nov. 1990.

[MV06] Mens, T.; Van Gorp, P.: A Taxonomy of Model Transformation. Electron.
Notes Theor. Comput. Sci. 152/, pp. 125–142, Mar. 2006.

[SB15] Schreibmann, V.; Braun, P.: Model-Driven Development of RESTful APIs.
In: Proceedings of the 11th International Conference of Web Information
Systems and Technologies, Lisbon, Portugal. INSTICC, SciTePress, pp. 5–
14, May 2015.

[SVC06] Stahl, T.; Voelter, M.; Czarnecki, K.: Model-Driven Software Devel-
opment: Technology, Engineering, Management. John Wiley & Sons,
2006.

http://www.martinfowler.com/articles/languageWorkbench.html
http://www.martinfowler.com/articles/languageWorkbench.html

20 Philipp Ulsamer, Tobias Fertig, Peter Braun

[VFB17] Vu, H.; Fertig, T.; Braun, P.: Towards model-driven hypermedia testing
for RESTful systems. In: WEBIST 2017 - Proceedings of the 13th In-
ternational Conference on Web Information Systems and Technologies.
2017.

[VV11] Völter, M.; Visser, E.: Product Line Engineering Using Domain-Specific
Languages. In: Software Product Lines - 15th International Conference,
SPLC 2011, Munich, Germany, August 22-26, 2011. Pp. 70–79, 2011.

[ZBD11] Zuzak, I.; Budiselic, I.; Delac, G.: Formal Modeling of RESTful Systems
Using Finite-State Machines. In (Auer, S.; Díaz, O.; Papadopoulos, G. A.,
eds.). Springer Berlin Heidelberg, chap. Web Engineering: 11th Inter-
national Conference, ICWE 2011, Paphos, Cyprus, June 20-24, 2011,
pp. 346–360, 2011.

cbe

Michaela Huhn, Hardi Hungar, Matthias Riebisch, Sebastian Voss (Hrsg.): MBEES 2018,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2017 1

Using PLC Programming Languages for Test-Case
Specification of Hardware-in-the-loop Tests

David Thönnessen1, Stefan Kowalewski2

Abstract: Testing cyber-physical production systems (CPPSs) pose particular problems to testing
control systems like Programmable Logic Controllers (PLCs). CPPS continuously underlie reconfigu-
ration such that testing before commissioning is no longer sufficient. Because of that, it is crucial
to have a testing environment supporting adaptive test cases and allowing for an efficient test case
specification. Our approach consists of a modular specification architecture using slightly extended
PLC programming languages. By doing this, we avoid the change of methodology observed when
using dedicated test languages and corresponding tools. Our hypothesis is that this will lead to faster
and more reliably changeable test case descriptions and thus will create the desired agility.

Keywords: Programmable Logic Controller; Automation; Testing; Simulation

1 Introduction

This paper deals with testing of cyber-physical production systems (CPPSs) [BtHVH14]
before and after commissioning. Testing CPPSs is essential because these systems underlie
reconfiguration and changing environmental conditions. Our approach is to optimize
Hardware-in-the-Loop (HiL) testing for the application in automation [Gu07] and allow
testing after commissioning a control system. With this goal, we extended Programmable
Logic Controller (PLC) programming languages [IE13] to qualify them for test case
specification. We will describe the test process as well as the introduced language extensions
in Section 4. Our initial scenario consists of a plant controlled by a PLC. The plant provides
sensor information that are captured by the PLC. A control program processes the inputs
and generates outputs for the actuators of the plant. We will call the PLC more generally
System Under Test (SUT) in this scenario. When testing with HiL, the so-called HiL
simulator replaces the plant. It simulates the sensors of the plant and, in return, evaluates
the control signals of the SUT, in the following named actual signals. One approach for
evaluating these signals is to compare them to a specification as done in the tools WCOMP or
Arttest [Wi17, Zh07]. The tester has to implement this specification defining the reference
behavior of the SUT as a function of its output signals. A complete specification allows
calculating a reference signal for every actual signal. Within the HiL simulator we compare
1 RWTH Aachen University, Informatik 11 - Embedded Software, Ahornstraße 55, 52074 Aachen, Germany

thoennessen@embedded.rwth-aachen.de
2 kowalewski@embedded.rwth-aachen.de

https://creativecommons.org/licenses/by-nc/3.0/
thoennessen@embedded.rwth-aachen.de
kowalewski@embedded.rwth-aachen.de

2 David Thönnessen, Stefan Kowalewski

these reference signals against the actual signals in order to decide whether the behavior
of the SUT is valid or not [Th17]. This paper is an abbreviated version of our submitted
contribution [TK18].

2 Architecture

Simulator

System Under Test

Test Steps

Acceptance Criteria

Plant Model

SupervisorPass / Fail

Stimuli

Actual Signals

Reference Signals

Figure 1: Simplified information flow within the HiL simulator.

We partition a test-case specification into the modules Plant Model, Test Steps, and
Acceptance Criteria. Figure 1 shows the information flow between them. Every module is a
Program Organization Unit (POU) of type program [IE13] and thereby can be modified
independently from the others. Besides these three modules that are specified by the tester
there is the so-called Supervisor. The Supervisor carries out the comparison between the
reference and the actual signals. The reference signals come from the Acceptance Criteria
and the actual signals are captured by the HiL simulator. The Supervisor accepts signals in
form of sample points in discrete value- and time-domain (Sec. 4.1).

2.1 Modules

The Plant Model consists of a physical model of the plant and updates it with the output
signals of the SUT in order to deliver realistic inputs to the SUT. Realistic means in this
context that the generated data has to comply sufficiently with those in normal operation of
the plant. The goal of the tester is to specify the Plant Model with as little effort as possible
and as detailed as necessary. We will point this out at the example of a temperature-regulated
liquid tank. The tank is equipped with a heater and we assume the liquid level to be constant
90 %. In normal operation, the SUT regulates the heater on basis of a temperature sensor. It
enables the heater if the temperature falls below 50 ◦C and disables it as soon as it exceeds

Usage of PLC Languages for HiL-Testing 3

55 ◦C. For testing the SUT the HiL simulator has to model the temperature sensor value.
We assume that there are no external influences, so the temperature is solely influenced by
the heater. The physical model starts with an initial temperature defined by the tester and
models the heating or cooling of the liquid during execution, on basis of the control signal
of the heater. The HiL simulator delivers the resulting sensor value to the SUT. For other,
more complex examples, the Plant Model has to calculate additional information that is not
transmitted to the SUT but required to calculate sensor values. We denote such information
as virtual signals. An example for this is a conveyor belt with a workpiece on it. The belt
is driven by a motor and equipped with a light barrier at both the beginning and the end.
While the SUT is only interested in the sensor information of the light barriers we have to
model the exact position of the workpiece on the belt. The position serves as calculation
basis for the switching status of the light barrier but is not handed over to the SUT. The
modules Test Steps and Acceptance Criteria can make use of virtual signals. For example,
the tester could simulate pressing the emergency stop switch when the workpiece passes
a given position on the belt. Within the module Test Steps the tester has the possibility
to stimulate the SUT. In the beginning phase of the test the tester uses stimuli in order
to transfer the SUT to a state to test. After this phase the tester uses stimuli to provoke
test scenarios, e.g. activating the emergency stop. Stimuli can be seen as manipulations
of sensor values leading to a state change of the SUT. If a tester wants to intervene in the
system they have to manipulate the normal state of the system. Figure 2 shows the special

Test Steps

Fault Insertion

Plant Model
SUT

Figure 2: Manipulation of sensor data of the Plant Model by Test Steps.

case of a so-called Fault Insertion Test [IE11, Na16]. In this context, the tester has the
possibility to switch between single sensor values of the Plant Model and own values. When
they switch to own sensor values they are able to arbitrary manipulate the sensor values and
pass them to the SUT. Within the Acceptance Criteria, the tester defines expected results
for a set of output signals of the SUT. They specify the set but do not have to incorporate
all signals. The simulator ignores signals in its evaluation which are not included in this set.
When specifying those signals the tester is able to access data from the Plant Model and
Test Steps (see virtual signals). The Supervisor acts as a superordinate instance of the test
case. It compares the reference signals specified in the Acceptance Criteria to the actual
signals captured by the SUT. It evaluates the test as passed if the signals equal, and, in
return, as failed if there are deviations. The goal of the presented architecture is to ensure
efficiency and adaptability of test cases. The first aspect is the reusability of the plant model.
As soon as the tester specified the model they can reuse it for subsequent test cases. The
second aspect results from the fact that the outputs of the module Acceptance Criteria are
isolated from the modules Plant Model and Test Steps and thereby have no effect on the

4 David Thönnessen, Stefan Kowalewski

test execution. Using this, the simulation can be recorded and run again at a later point in
time, even without having the SUT connected. This is called postsimulation. For recording
the simulator stores all inputs and outputs of the SUT during test execution. Running a
simulation again allows the tester to exchange the Acceptance Criteria because they have no
effect on the SUT. Thus, the tester can analyze other signals or adapt the reference signal.
Furthermore, the simulator can accelerate the postsimulation because the simulation time
does not have to coincide with the physical time. For example, a simulation that originally
took 3 hours could finish in 20 seconds.

2.2 Execution

The dependencies between the single modules are shown in the information flow in Figure 1
on page 2. Modules are relying on the outputs of other modules in order to perform own
calculations on them. For example, the Test Steps have to receive the sensor values from
the Plant Model before they are able to pass them to the SUT. Consequently, the simulator
has to execute the modules in the following sequence:

1. Read inputs
2. Update Plant Model
3. Execute Test Steps
4. Calculate Acceptance Criteria
5. Apply Supervisor
6. Write outputs

When executing this sequence cyclically the HiL simulator can continuously receive data
from and transmit data to the SUT. In addition to this, the intermediate steps 2 - 5 allow
to evaluate the behavior of the SUT. This approach was inspired by the cyclic execution
model of a PLC [Be11]. In the presented cycle the execution is separated into three parts:
reading inputs, executing the program, and writing outputs. We replaced the program with
steps 2 - 5. However, it should be noted that the goal of our approach is not to be executed
on a PLC. Our goal is to demand as little familiarization time from the tester as possible
compared to the programming of PLCs by following the same execution scheme.

3 Test Case Specification

The specification of test cases can be completely done in PLC programming languages.
Currently, our concept supports the PLC languages Structured Text (ST) and Sequential
Function Chart (SFC) [IE13]. The choice of which programming language to use can be
individually made for Plant Model, Test Steps, and Acceptance Criteria. For example, the
tester can implement the Plant Model in SFC and the Test Steps in ST. When implementing,
the tester can make use of the accustomed functions of the programming languages. We

Usage of PLC Languages for HiL-Testing 5

slightly extended the languages to allow for a complete test case specification of Hardware-
in-the-Loop-Tests (HiL-Tests). This incorporates the ability to override signals of the Plant
Model within the Test Steps (see Section 2.1). For every signal Q of the Plant Model there
is a variable OVERRIDE_Q of type Boolean within the Test Steps. When assigned with
TRUE, the Test Steps override variable Q with its own value. Additionally to this, we
extended the languages by the specification of signal tolerances which we will describe in
the next Section in detail.

4 Signal Tolerances

The architecture of the HiL simulator requires the specification of reference signals which
are then matched to the actual signals of the SUT. Up to now, we considered a test case to
pass if these signal pairs equal. However, this assumption cannot be applied in practice.
On the one hand, we have to account that a SUT usually has a response time t to changed
input signals. The reaction of the SUT can be measured at the earliest time t + r. If the
tester does not consider this delay in the Acceptance Criteria, the test fails regardless of the
actual reaction time requirements. On the other hand, the time requirements for the SUT
are often ranging from a few hundred milliseconds to several seconds. The requirements
can therefore be much lower than the measurement resolution of the HiL simulator. In order
to allow the tester to capture these cases our approach provides the specification of signal
tolerances in time- and value-domain.

4.1 Signal Representation

Value

Time

0

1

Figure 3: Discretization and grouping of signals.

Firstly, we have to clarify how signals are represented within the HiL simulator. The
simulator samples inputs and writes outputs cyclically, resulting in a discrete-time sampling
of the input signals. Analogously, the simulator writes the outputs with a fixed time
resolution complying with its execution frequency. Signals inside the simulator are digital,
so that an analog-to-digital or digital-to-analog conversion is needed when reading inputs or
writing outputs. This process has, analog to the time domain, a discrete quantization of
the input signals as well as a fixed resolution of the output signals [Ho68]. In summary,
signals inside the simulator consist of a set of time and value discrete points, as marked by
crosses in Figure 3. The original signal is denoted by a dashed line and describes a signal

6 David Thönnessen, Stefan Kowalewski

generated by Pulse-width modulation (PWM). Reference signals are treated the same way
but need some post-processing. The Supervisor creates so-called reference sets, as indicated
by dashed ovals in Figure 3. If a sample point has the same value like the sample point
in the time step before it is added to its set. As soon as the value changes, the Supervisor
closes the set and opens a new one. Once a set is closed, no sample points can be added to
it anymore. After the reference sets are created, the Supervisor can carry out the matching
with the actual signal. It assigns sample points of the actual signal to the reference sets with
the aim of determining a valid mapping.

4.2 Definition

Shorter Longer Earlier Later

Duration Change

Lower Higher

Value

Timing

Figure 4: Tolerance Domain

In order to specify a tolerable deviation of two signals, we first have to define quantitative
measures. We distinguish between tolerances in time and value domain, as shown in Figure
4. In value domain, we distinguish between a deviation of higher and lower value. In
time domain, we have more options: we allow for an earlier or later value change and
we allow single segments of the signal to vary in duration. Every reference set defines a
signal segment, i.e. a sequence of sample points with constant value. The tester has the
opportunity to set these tolerances in his test case for signals to test. The range of signals is
not limited to output signals, but also allows virtual signals defined in the Plant Model (see
Section 2.1).

4.3 Specification in Structured Text

We extended ST to allow for tolerance specifications in the variable declaration of its
program code [Th17]. Our syntax allows for an inheriting specification, as given in Figure
4. When setting a tolerance it applies to all of its subtypes, too. We illustrate this in the
following example in ST syntax:
Timing := T#5s;

Timing.Duration.Longer := T#2s;

Timing.Change.Earlier := T#3s

Value := 10;

We extensively use inheritance in this example. In the first step, we set the tolerance in time
domain to 5 s so that the duration of signal segments as well as the value change may vary

Usage of PLC Languages for HiL-Testing 7

by 5 s. In the following instruction we change the duration tolerance to allow segments to
be up to 5 s shorter but not more than 2 s longer. Line 3 shortens the signal offset to the
front to 3 s. Finally, we set the value tolerance to the value 10 which allows signals with a
value higher or lower by 10 than the reference signal. There exist test cases requiring the
tester to change tolerances during execution. Consider the transient response of a system as
an example. While the tester may allow a high value tolerance during the transient period,
they want to restrict it to a small band after a certain time. For this reason we introduced the
concept of tolerances cases, illustrated in the following example:
VAR_OUTPUT

Q: INT := 1 WITH TOLERANCE

TOLERANCE_CASE SETTLED = TRUE:

VALUE := 10;

END_TOLERANCE_CASE

TOLERANCE_DEFAULT

VALUE := 80;

END_TOLERANCE_DEFAULT

END_TOLERANCE

END_VAR

The code defines variable Q of type integer with an initial value of 1. Case TOLERANCE_DEFAULT
defines the default tolerance in value domain to 80. Thus, the tester allows a deviation of
±80 during the transient period. In the steady state, the Test Steps (not shown here) set the
variable SETTLED to TRUE, resulting in a value tolerance of 10. By following this principle,
the tester can vary the tolerances during test execution.

4.4 Specification in Sequential Function Chart

In SFC, the tolerance specification integrates into the specification of the reference signal.
The example given in Figure 5 shows the procedure: Initially, the pump is disabled. When

START

FILL

DRAIN

LEVEL < 80

LEVEL > 120

START

S PUMP

N TOL_TIMING_CHANGE(PUMP, T#5s)

R PUMP

N TOL_TIMING_CHANGE(PUMP, T#1s)

Figure 5: Adjusting tolerances in Sequential Function Chart.

8 David Thönnessen, Stefan Kowalewski

the level falls below 80, the tester wants the pump to activate with a time tolerance of ±5 s.
The tolerance is applied just when the execution switches to state FILL. If the level exceeds
120, the tester wants the pump to deactivate with a time tolerance of ±1 s set by the DRAIN
state. This specification aims to imitate the state- and action-based implementation of SFCs
by an action-based specification of signal tolerances.

5 Application

L1 L2

S

B

Figure 6: Conveyor belt as a sample application.

This section will discuss the application of the presented approach using a simple, exemplary
plant. The plant is shown in Figure 6 and consists of a belt B, a punch S, and two light
barriers L1 and L2. As soon as a workpiece interrupts L1, the belt starts to run and stops as
soon as it interrupts L2. The punch then operates the workpiece and the belt carries it away.
We will now show the implementation of the modules Plant Model and Test Steps in ST and
Acceptance Criteria in SFC. The specification of signal tolerances is done in ST. Please
consider the shown implementation to be minimal and to make simplified assumptions in
order to focus on the understanding of the concept. The Plant Model is implemented as
follows:
IF B THEN

POSITION := POSITION + 1;

END_IF

IF POSITION > 5 THEN

L1 := FALSE;

END_IF

L2 := (POSITION >= 50 && POSITION <= 55);

The position is initialized with 0 and stored as an internal variable. When the belt moves,
the position is increased in every cycle by 1. As soon as the position exceeds 5, L1 is
defined to be non-interrupted because the workpiece is not in its measuring field anymore.
L2 is interrupted just when the position is in the range of 50 to 55. This implementation
covers the sensor data of the SUT and thus is an adequate plant model. The next step is to
implement the Test Steps. In this example, the SUT is stimulated by placing a workpiece on
the belt, i.e. interrupting L1. Consequently, the implementation consists of one instruction
that sets the sensor value of L1 to TRUE. The last step is the implementation of Acceptance

Usage of PLC Languages for HiL-Testing 9

START

TO_PUNCH

PUNCH

L1

L2

S B

R B

SL t#1s S

FROM_PUNCH

NOT S

SL t#4s B

END

NOT B

Figure 7: Acceptance Criteria implemented in Sequential Function Chart.

Criteria, subdivided into the specification of the reference signal and the tolerances. Figure 7
shows the implementation of the reference signal in SFC that is completed by the following
tolerance specification:
VAR_OUTPUT

B := BOOL WITH TOLERANCE

TIMING := t#500ms;

END_TOLERANCE

S := BOOL WITH TOLERANCE

TIMING.CHANGE := t#500ms;

TIMING.DURATION := t#100ms;

END_TOLERANCE

END_VAR

The execution switches to state TO_PUNCH when the Test Steps stimulate the SUT by
interrupting L1. In its action, it defines the belt B to run. The tolerances define that
switching the belt on or off may vary by 500 ms. As soon as the Plant Model declares L2
as interrupted, the execution switches to state PUNCH. For operating the punch, the tester
requires the belt to stop and trigger the punch for 1 second. Switching the belt and the
punch on or off may vary by 500 ms and the duration of punching by 100 ms. After this
step, the workpiece has to be carried away by activating the belt for 4 s in state FROM_PUNCH.

10 David Thönnessen, Stefan Kowalewski

6 Conclusion

The presented approach allows for the implementation of test cases by slightly extended PLC
programming languages (see Section 3 and 4.2). Made possible by the modular achitecture,
i.e. the division into Plant Model, Test Steps, and Acceptance Criteria, the tester can adapt
parts of the test case efficiently. We aim for an agile testing process by this modularity and
the closeness to PLC programming languages. In future work, we will present and evaluate
an implementation of the presented concept, based on the Soft-PLC Twistturn [OKK14].

References
[Be11] Berger, H: Automatisieren mit STEP 7 in AWL und SCL: Speicherprogrammierbare

Steuerungen SIMATIC S7-300/400. Publicis Publ., 2011.

[BtHVH14] Bauernhansl, Thomas; ten Hompel, Michael; Vogel-Heuser, Birgit: Industry 4.0 in
Produktion, Automatisierung und Logistik. Werkstattstechnik, 103(March):648, 2014.

[Gu07] Gu, Fangming; Harrison, William S.; Tilbury, Dawn M.; Yuan, Chengyin: Hardware-
in-the-loop for manufacturing automation control: Current status and identified needs.
In: Proceedings of the 3rd IEEE International Conference on Automation Science and
Engineering, IEEE CASE 2007. pp. 1105–1110, 2007.

[Ho68] Hoeschele, David F: Analog-to-digital/digital-to-analog conversion techniques. 1968.

[IE11] IEC 26262-4: Road vehicles - Functional safety - Part 4: Product development at the
system level. IEC, 2011.

[IE13] IEC 61131-3: Programmable controllers - Part 3: Programming languages. IEC, 2013.

[Na16] National Instruments: Hardware-in-the-Loop (HIL) Test System Architectures. 2016.

[OKK14] Obster, Mathias; Kalkov, Igor; Kowalewski, Stefan: Development and execution of PLC
programs on real-time capable mobile devices. In: Emerging Technology and Factory
Automation (ETFA). IEEE, pp. 1–8, 2014.

[Th17] Thönnessen, D.; Reinker, N.; Rakel, S.; Kowalewski, S.: A Concept for PLC Hardware-
in-the-loop Testing Using an Extension of Structured Text. In: Emerging Technology
and Factory Automation (ETFA). IEEE, pp. 1–8, 2017.

[TK18] Thönnessen, D.; Kowalewski, S.: Agiles Testen von cyber-physischen Produktionssyste-
men. atp edition, 2018. Manuscript submitted for publication.

[Wi17] Wiechowski, Norbert; Rambow, Thomas; Busch, Rainer; Kugler, Alexander; Hansen,
Norman; Kowalewski, Stefan: Arttest – a New Test Environment for Model-Based
Software Development. In: SAE Technical Paper. SAE International, pp. 1–11, 2017.

[Zh07] Zhang, Peng; Luk, Wai Shing; Song, Yu; Tong, Jiarong; Tang, Pushan; Zeng, Xuan:
WCOMP: Waveform Comparison Tool for Mixed-Signal Validation Regression in
Memory Design. Proceedings of the Asia and South Pacific Design Automation
Conference, ASP-DAC, pp. 209–214, 2007.

cba

Michaela Huhn, Hardi Hungar, Matthias Riebisch, Sebastian Voss (Hrsg.):
Modellbasierte Entwicklung Eingebetteter Systeme,

Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2018 1

Finding Inconsistencies in Design Models and Requirements
by Applying the SMARDT Process

Stefan Kriebel1, Evgeny Kusmenko2, Bernhard Rumpe2, Michael von Wenckstern2
�

Abstract: The development of safety critical systems requires a highly automated integrated
methodology supporting the design, verification and validation of the overall product. Such a
methodology maintains the consistency and correctness of all artifacts at all development stages
ideally incorporating requirements changes into the corresponding models, tests, and code. This
paper shows how the SMARDT process uses formalized SysML diagrams to identify inconsistencies
in architectural designs and requirements. An adaptive light system serves as illustrative running
example.

1 Introduction

Safety critical software systems undergo a complex development process before they are
introduced onto the market. The manufacturers are obliged to make their systems ISO26262
compliant and to guarantee the correctness of their implementation. Usually such systems
become very large and have to fulfill hundreds of intertwined requirements developed by
different teams. Therefore, an urgent need for automated means of consistency checking of
requirement specifications identifying errors in early design stages has been arising.

At BMW, one of Germany’s largest automotive companies, the new SMARDT process tries
to tackle this problem. One of its goals is to ensure artifact consistency for the different
phases of the development process by using model-based software engineering (MBSE),
particularly formalized SysML diagrams.

This paper shows how the SMARDT process uses formalized SysML diagrams to identify
inconsistencies in design decisions and requirements. Thereby, we focus on artifacts of
the logical layer of the SMARDT process and demonstrate the idea on the requirement
specification of a real-world Adaptive Light System (ALS).

Section 3 recaps the main ideas of the SMARDT process. Section 4 shows how Component
& Connector (C&C) views reveal structural design inconsistencies derived from different
1 BMW Group, Munich, Germany; stefan.kriebel@bmw.de
2 RWTH Aachen University, Software Engineering, Ahornstraße 55, 52074 Aachen, Germany;
{kusmenko,rumpe,vonwenckstern}@se-rwth.de

https://creativecommons.org/licenses/by-sa/4.0/

2 Stefan Kriebel, Evgeny Kusmenko, Bernhard Rumpe, Michael von Wenckstern

D

1st layer

2nd layer

Req

Req

DSys1st

DDSys2nd

Object of reflection

Logical layer

3rd layer

Req DDSys3rd

4th layer

Req DDCode4th

Technical concept

HW+SW Realization

Req
original

Structural

Refinement ValidationDxth SysML diagrams xth layer

Req Textual Requirements

Trace link

Manual Transformation

Automatically generated

Product

Artifact

deployment

Test1

Test1’

Test1’’

Test1’’’

Test1’’’

Test2

Test2’

Test2’’

Test2’’’

Test3

Test3’

Test3’’

Test4

Test4’
product

Automatically transformed

N
e
w

 i
n

S
M

A
R

D
T

C
la

s
s
ic

a
l

V
-M

o
d
e

l

Fig. 1: Overview of the SMARDT methodology (copied from [Hi18]).

requirement specifications. Section 5 presents ideas how formalized Activity Diagrams
(ADs) help to detect behavioral inconsistencies in requirements.

2 Running Example

To demonstrate the feasibility and the advantages of the proposed methodology we use seven
real-world requirement specifications of an ALS [Be17]. The ALS model controls adaptive
high and low beam, turn signals as well as cornering and ambient light. Adaptive high
and low beam adjust headlamps to the traffic situation and provide optimized illumination
without dazzling others. Cornering light illuminates the area to the side of a vehicle to
take a look around the bend. Ambient light welcomes the driver with an indirect light. For
inspection purposes all 93 original requirements of the ALS are available at our homepage3.

3 The SMARDT Methodology

The SMARDT (Specification Methodology Applicable to Requirements, Design, and
Testing4) approach [Hi18] extends the German V-Model [BD95], which is the official
project management methodology of the German government. The SMARDT process

3 http://www.se-rwth.de/materials/cncviewscasestudy/

4 The original abbreviation SMArDT is related to the German term "Spezifikations-Methode für Anforderung,
Design und Test"

http://www.se-rwth.de/materials/cncviewscasestudy/

Finding Inconsistencies in Design Models and Requirements by Applying the SMARDT Process 3

delivers reliable specification methodologies by introducing formalized SysML diagrams
[OM15] with a well-defined semantics [HR04] to specify the functionality of automotive
systems. This allows to automatically ensure a permanent consistency between all abstraction
layers of the V-Model. This task can become particularly tedious if maintained by hand in
agile development processes as those are mostly iterative, incremental, and evolutionary
[Be01]. New validations enabled by SMARDT process are: (1) backward compatibility
checks [Ru15, Ri16, Be16, Ku18] for software maintenance and evolution between different
diagram versions of the same layer, (2) refinement checks [Ru96, HRvW17] between
diagrams of different layers allowing to detect specification inconsistencies between
different layers, as well as (3) advanced structural or extra-functional property [Ma16]
checks on SysML diagrams using OCL [Ma17].

The key principles of SMARDT for a formal specification of requirements, design, and
testing of system engineering artifacts according to ISO 26262 are illustrated in Figure 1.
The methodology is structured in four layers: (1) The object of reflection layer contains a first
description of the object under consideration and shows its boundaries from a customer’s
point of view. (2) The logical layer containing functional specifications without details of
their technical realizations. (3) The technical concept, e.g. C code or Simulink models,
belongs to the third layer. Finally, the fourth layer represents the software and hardware
artifacts present in the system’s implementation.

In SMARDT consistency between different layers is ensured by verification and model-based
testing of the final product against the requirements of all layers. More specifically, SMARDT
enables structural verification as explained in Section 4 between each layer indicated by
the green check marks in Figure 1. Furthermore, SMARDT enables a systematic and fully
automatic derivation of test cases for each layer as discussed in [Hi18] and illustrated on the
right side of Figure 1. The previous SMARDT paper [Hi18] showed how this methodology
is applied to develop a self-driving racing vehicle; its main focus was the use of formalized
ADs enriched by OCL constraints for automated test case derivation. In contrast, this paper
focuses on detecting structural and behavioral inconsistencies between different artifacts in
the logical layer of the SMARDT process.

4 Architecture Specification using Views

Embedded software systems are often created in Simulink as C&C models describing
functional, logical or software architectures [TMD09] in terms of components executing
computations and connectors effecting component interaction via typed and directed ports.
An advantage of this approach is that complex components such as ALS can be hierarchically
decomposed into other smaller components to be developed by different teams. Interaction
between components occur only via connectors. SysML and Modelica are two other famous
representatives for C&C modeling languages.

4 Stefan Kriebel, Evgeny Kusmenko, Bernhard Rumpe, Michael von Wenckstern

ALS

Flashing

HeadLight

FlLeft

FlRight

FlLeft

FlRight

LightSwitch
CLeft

CRight

ALeft

ARight

AmbientLight
Brightness

CorneringLight

Brightness

Key

ALeft

ARight

FlLeft

FlRight

Speed

LightSwitch

Voltage

CLeft

CRight

BlinkerLever

Hazard

Key

Speed

Voltage

component

component name

port

port
name

junction

connector

C&C Model

Fig. 2: Very simple example C&C model for ALS.

C&C views, as presented in [MRR13], are developed to focus on important view points
(excerpts) of large C&C models without being required to model all the other (for the
view point unimportant) information. For example a view can only show how a component
is decomposed into subcomponents without showing any ports and connections of the
subcomponents. The main aim of C&C views concept is to have many but therefore small,
precise and good-readable view points of one large C&C model. For this reason C&C
views introduce four major abstractions: hierarchy, connectivity, data flow, and interfaces
of C&C models. The hierarchy of components in C&C views is not necessarily direct
(intermediate components may be skipped); abstract connectors can cross-cut component
boundaries and they can also connect components directly (if the concrete connected port is
not important for this view); abstract effectors describe data flow abstracting over chains of
components and connectors, and C&C views do not require complete interfaces with port
names, types and array sizes. Intuitively, a C&C model satisfies a C&C view iff all elements
and relations shown by the view have a satisfying concretization in the model. The formal
definitions of C&C model, C&C view, and their satisfaction are available in [MRR13] and
from supporting materials website of paper [Be17].

C&C View Verification and Witnesses for Tracing Figure 2 shows the example C&C
model of an adaptive light system (ALS). This simplified model controls the flash LEDs
for turning as well as the left and right light bulbs for cornering and ambient lights. The
ALS consists of the two subcomponents Flashing and HeadLight. Component HeadLight is
hierarchically decomposed into two further components: CorneringLight, and AmbientLight.
The C&C view ALS1 shown in Figure 3 describes the CorneringLight component illuminating
on intersections the road where the driver wants to turn into. Thus, the input port BlinkerLever

Finding Inconsistencies in Design Models and Requirements by Applying the SMARDT Process 5

ALS
CorneringLight

Blinker

Lever CLeft

CRight

view ALS1

abstract

connector

abstract

effector

ALS

Flashing Ambient

Light
FlLeft

ALeft

view ALS2

Fig. 3: Two C&C views ALS1
(top) and ALS2 (bottom)

ALS

Flashing HeadLight

FlLeft
CLeft

CRight

CorneringLight
FlLeft

CLeft

CRight

BlinkerLever

witness ALS1s

ALS Flashing

HeadLight

FlLeft FlLeft

CLeft

CRight

AmbientLight

CorneringLight

ALeft

FlLeft CLeft

CRight

witness ALS2n

C&C Model is missing an effector from the component Flashing

to the component AmbientLight (from port FlLeft to port Aleft)

Fig. 4: Witness for satisfaction ALS1s (top) and witness for non-
satisfaction ALS2n (bottom)

of the ALS component has effect (modeled by an abstract effector) to at least one input
port of the CorneringLight component. The calculated light values (CLeft, and CRight) of
the CorneringLight component are passed directly (without being modified anymore) to
the output ports of the ALS component (modeled by two abstract connectors). The C&C
view ALS2 is about the relation between the Flasing and the AmbientLight component. It
specifies that the FlLeft (flashing left) output of components Flashing effects the ambient
left light (port ALeft of component AmbientLight); e.g. brighter left ambient light when the
left parking mode is activated. The model ALS satisfies the view ALS1.

C&C view verification, as presented in [MRR14], gets as input a C&C model and a C&C
view. Besides a Boolean answer whether the C&C model satisfies the C&C view, the
verification algorithm produces a local minimal satisfaction or one or more local non-
satisfaction witnesses. As an example, a witness for satisfaction ALS1s is shown in Figure 4
and demonstrates how the C&C model satisfies ALS1. The SMARDT approach uses the
generated witnesses to automatically generate traceability information between SysML
artifacts of layer 2 (C&C views) against the large SysML model of layer 3 (C&C models).
The witness is itself a well-formed model. The witness contains all view’s components (here
ALS, and CornerningLight) as well as their parent components to show the complete hierarchy
between two components specified in the view. Therefore, the witness contains also the
HeadLight component. The positive satisfaction witness also contains all ports corresponding
to a view, therefore the witness contains BlinkerLever port of ALS as well as CLeft, and
CRight ports of CorneringLight. Additionally the witness contains all model connectors and

6 Stefan Kriebel, Evgeny Kusmenko, Bernhard Rumpe, Michael von Wenckstern

all data-flow paths. The abstract connector from CorneringLight (port CLeft) to ALS (port
unknown) introduces the following elements in the witness: (1) port CLeft of component
HeadLight; (2) connector of ports CLeft from component CorneringLight to component
HeadLight; and (3) connector of ports CLeft from component HeadLight to component ALS. For
the abstract effector from ALS (port BlinkerLever) to CorneringLight the following elements
in the chain serve as witness: (1) component Flashing; (2) ports BlinkerLever and FlLeft of
Flashing; (3) connector of ports BlinkerLever from ALS to Flashing; (4) connector of ports
FlLeft from Flashing to HeadLight; and (5) connector of ports FlLeft from HeadLight to
CorneringLight.

The model ALS does not satisfy the view ALS2. Every negative non-satisfaction witness
contains a minimal subset of the C&C model and a natural-language text, which together
explain the reason for non-satisfaction. These witnesses are divided into five categories:
MissingComponent, HierarchyMismatch, InterfaceMismatch, MissingConnection, Missing-
Effector (see [MRR14]). A witness for non-satisfaction ALS2n (case MissingEffector) is
shown in Figure 4. It shows all outgoing connector-effector chains starting at port FlLeft
of component Flashing as well as the abstract effector’s target port, AmbientLight’s ALeft,
which is not reachable. Removing the effectors in the view ALS2 would cause the model to
satisfy this modified view even though Flashing and AmbientLight are direct siblings in the
C&C view and are not direct siblings in the C&C model; C&C views allow to abstract away
the intermediate component HeadLight.

Identifying Design Inconsistencies with C&C Views The previous paragraphs showed
how C&C views verification can be used to check structural consistencies and how to
generate tracing witnesses between artifacts of layer B (view models) against artifact
of layer C (concrete logical C&C models). This part focuses on identifying structural
design inconsistencies between different artifact models of layer B. Figure 5 shows two
requirements about the cornering light. Since the last requirement AL-139 is a safety feature
for armored vehicles, a special team is responsible for it. Thus, the architectural designs (view
AL-122, and view AL-139) for the two requirements are developed by two different teams. The
top design shows the CorneringLight with two modes (subcomponents Cornering_Active,
Cornering_Deactive, and MultiSwitch), whereby the mode Cornering_Deactive is selected if
the voltage is too low. In the bottom design model the min block in combination with the
Switch one deactivates indirectly the cornering light by propagating 0% as light value to
OvervoltageProtection’s input ports when the DarknessSwitch port has the value true. C&C
view synthesis [MRR13] is the process in deriving one valid C&C model which satisfies
all given C&C views. The first part of this algorithm checks whether views contain design
contradictions. When all views as in our example are positive views (only expressing what
should be present; and do not contain negations such as component A should not contain
port B), then the contradiction check can be done in polynomial time and scales very well
to many hundreds views.

The contradiction check for the both views view AL-122 and view AL-139 would result in an

Finding Inconsistencies in Design Models and Requirements by Applying the SMARDT Process 7

AL-122: With subvoltage the cornering light is not available.
req AL-122

view AL-122

HeadLight

CorneringLight

Voltage

Cornering_Active
CLeft

CRight

Cornering_Deactive
CLeft

CRight

Overvoltage

Protection

CLeft

CRight

AL-139: With activated darkness switch (only armored vehicles)

the cornering light is not activated.

req AL-139

HeadLight

CorneringLight

DarknessSwitch

Overvoltage

Protection

view AL-139

CLeft

CRight

CLeft

CRight

Fig. 5: Design Inconsistency of two C&C views

error as in the top view the port CLeft of component CorneringLight is directly connected
(without modifying the value) to the component OvervoltageProtectionwhereas in the bottom
view the value from CorneringLight’s CLeft is manipulated by the min component before it
goes to the OvervoltageProtection’s CLeft port. Similar to the C&C view verification process
presented above, the contradiction algorithm generates an intuitive witness to highlight
incompatible parts of two views. The formalized C&C view verification problem with its
derived contradiction problem enables early analysis of structural design models in the
SMARDT process to detect as early as possible inconsistencies between different artifacts
created by different persons or teams, to avoid problems when integrating at a later time
step different software modules developed on inconsistent designs.

5 Formalized Activity Diagrams

In [Hi18] we showed how formalized ADs can be used in combination with OCL constraints
in order to generate test cases. In this paper, we demonstrate how formalized ADs can
help finding inconsistencies in requirement specification. Consider the Figures 6 and 7
illustrating two ADs describing the steering column stalk and the hazard lights behavior
based on the requirements AL-40 and AL-41 from [Be17], respectively. In Figure 6 the

8 Stefan Kriebel, Evgeny Kusmenko, Bernhard Rumpe, Michael von Wenckstern

Set Left Lights

Steering Column

Stalk (SCS)
Read Steering
Column Stalk

Left Lights

DirectionIndicatorLeft

[else] [SCS == �	
�]

AL-40 Direction indicator (left): When the steering column stalk is moved into the

position blinking (left) all left direction indicators (rear left, exterior mirrors left, front

left) start blinking synchronously with an on/off ration of 1:1.

LeftLights = ��������1: 1Otherwise, the
value of LEFT is
underspecified

req AL-40

AD AL-40

Fig. 6: Activity diagram for AL-40 describing the steering column stick behavior.

Read Hazard
Light Switch

Right Lights

HazardLights

[else] [HLS == 	
]

AL-41 Hazard lights: As long as the hazard light switch is pressed, all direction indicator lamps blink

synchronously. If the ignition key is inside the lock, the on/off ration is 1:1. Otherwise, the on/off ratio

is 1:2.

Ignition Key (IK)

Hazard Light

Switch (HLS)

[IK == 	

] [IK == 	
]

Read Ignition
Key

Set Left Lights Left Lights

Set Right Lights

LeftLights = ��������1: 2 LeftLights = ��������1: 1

RightLights = ��������1: 1RighLights = ��������1: 2

req AL-41

AD AL-41

Fig. 7: Activity diagram for AL-41 describing the emergency lights behavior.

model would receive the state of the steering column stalk through the corresponding input
port. If the position of the steering column stalk is set to left, the left lights of the car are
set to the blinking mode with an on/off ratio of 1:1, denoted as BLINKING1:1. This value is
written to the output port of the AD. The else branch is underspecified, i.e., nothing is said
about the output for the cases if the steering column stalk is set to right or to straight. Note,
that this is in accordance with the underlying requirement.

In the AD of Figure 7, the hazard light switch is read in order to decide whether to turn

Finding Inconsistencies in Design Models and Requirements by Applying the SMARDT Process 9

the lights on or not. However, to determine the concrete blinking mode, the position of
the ignition key is required. If the key is inserted, the 1:1 blinking mode is activated,
otherwise the 1:2 mode is used to save battery power. The else branch is underspecified
again. Note, that according to the requirement the same physical lights are used for hazard
blinking as for direction indication. This leads to a contradiction which becomes obvious
in the two ADs: if the key is not inside the lock and the hazard light switch is pressed,
according to AL-41, the vehicle’s indicators lamps should blink with a ratio of 1:2. Now
imagine that at the same time the steering column stalk is set to blinking (left). According
to AL-40 the blinking ratio of the left direction indicators should be 1:1. Considering that
a faster blinking drains the battery in a shorter amount of time, this specification error
might even become critical for human lives in cases of emergency. The error is discovered
automatically by creating a table mapping the three input signals to the specified lamp light
modes and filling it with all specified combinations. For Figure 6 we would obtain one
single combination, namely: (SCS = LEFT,HLS = DC, IK = DC) → (Le f tLights =
BLINKING1 : 1, RightLights = DC) where DC stands for "don’t care". Figure 7
produces two combinations one of which is (SCS = DC,HLS = ON, IK = OFF) →
(Le f tLights = BLINKING1 : 2, RightLights = BLINKING1 : 2). Expanding the DC
fields to all possible values reveals that the specification requires two contradictory outputs
for the same input.

6 Conclusion

In this paper we discussed the need for automated consistency checks for requirement
and design artifacts of safety critical systems. Therefore, we developed a methodology
supporting the SMARDT process - a formalized version of the widely used V-Model - by
identifying wrong or contradicting requirements at early development stages using C&C
views and activity diagrams. The methodology was demonstrated on a real-world ALS
requirement specification. Using the proposed concepts we were able to detect structural and
behavioral inconsistencies on the logical layer of the SMARDT process, i.e., long before
the actual implementation would be created. Future work comprises analysis of further
formalized diagrams and their respective combinations as well as detailed case studies of
the complete SMARDT process and the proposed tooling.

Acknowledgements This research was supported by a Grant from the GIF, the German-Israeli Foundation for Scientific Research
and Development, and by the Grant SPP1835 from DFG, the German Research Foundation.

References
[BD95] Bröhl, Adolf-Peter; Dröschel, Wolfgang: Das V-Modell. München, Wien: Oldenburg-

Verlag, 1995.

[Be01] Beck, Kent; Beedle, Mike; Van Bennekum, Arie; Cockburn, Alistair; Cunningham, Ward;
Fowler, Martin; Grenning, James; Highsmith, Jim; Hunt, Andrew; Jeffries, Ron et al.:
Manifesto for agile software development. 2001.

10 Stefan Kriebel, Evgeny Kusmenko, Bernhard Rumpe, Michael von Wenckstern

[Be16] Bertram, Vincent; Roth, Alexander; Rumpe, Bernhard; von Wenckstern, Michael: Ex-
tendable Toolchain for Automatic Compatibility Checks. In: OCL’16. 2016.

[Be17] Bertram, Vincent; Maoz, Shahar; Ringert, Jan Oliver; Rumpe, Bernhard; von Wenckstern,
Michael: Case Study on Structural Views for Component and Connector Models. In:
MODELS. 2017.

[Hi18] Hillemacher, Steffen; Kriebel, Stefan; Kusmenko, Evgeny; Lorang, Mike; Rumpe, Bern-
hard; Sema, Albi; Strobl, Georg; von Wenckstern, Michael: Model-Based Development
of Self-Adaptive Autonomous Vehicles using the SMARDT Methodology. In: MODEL-
SWARD’18. 2018.

[HR04] Harel, David; Rumpe, Bernhard: Meaningful Modeling: What’s the Semantics of ”Se-
mantics”? IEEE Computer, 37(10), 2004.

[HRvW17] Heithoff, Malte; Rumpe, Bernhard; von Wenckstern, Michael: Anforderungsverikation
von Komponenten- und Konnektormodellen am Beispiel Autonom Fahrender Autos. GI
Softwaretechnik-Trends, 37(2), 2017.

[Ku18] Kusmenko, Evgeny; Shumeiko, Igor; Rumpe, Bernhard; von Wenckstern, Michael: Fast
Simulation Preorder Algorithm. In: MODELSWARD. 2018.

[Ma16] Maoz, Shahar; Ringert, Jan Oliver; Rumpe, Bernhard; Wenckstern, Michael von: Con-
sistent Extra-Functional Properties Tagging for Component and Connector Models. In:
ModComp. 2016.

[Ma17] Maoz, Shahar; Mehlan, Ferdinand; Ringert, Jan Oliver; Rumpe, Bernhard; von Wenck-
stern, Michael: OCL Framework to Verify Extra-Functional Properties in Component
and Connector Models. In: ModComp. 2017.

[MRR13] Maoz, Shahar; Ringert, Jan Oliver; Rumpe, Bernhard: Synthesis of component and
connector models from crosscutting structural views. In: FSE. 2013.

[MRR14] Maoz, Shahar; Ringert, Jan Oliver; Rumpe, Bernhard: Verifying component and connector
models against crosscutting structural views. In: ICSE. 2014.

[OM15] OMG: OMG Systems Modeling Language (OMG SysML). Technical Report Version
1.4, 2015.

[Ri16] Richenhagen, Johannes; Rumpe, Bernhard; Schloßer, Axel; Schulze, Christoph; Thissen,
Kevin; von Wenckstern, Michael: Test-driven Semantical Similarity Analysis for Software
Product Line Extraction. In: SPLC. 2016.

[Ru96] Rumpe, Bernhard: Formale Methodik des Entwurfs verteilter objektorientierter Systeme.
Herbert Utz Verlag Wissenschaft, 1996.

[Ru15] Rumpe, Bernhard; Schulze, Christoph; von Wenckstern, Michael; Ringert, Jan Oliver;
Manhart, Peter: Behavioral Compatibility of Simulink Models for Product Line Mainte-
nance and Evolution. In: SPLC. 2015.

[TMD09] Taylor, Richard N.; Medvidovic, Nenad; Dashofy, Eric: Software Architecture: Founda-
tions, Theory, and Practice. Wiley, 2009.

cba

Herausgeber et al. (Hrsg.): Modellbasierte Entwicklung eingebetteter Systeme MBEES2018,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2018 1

Applying DSE for Solving the Deployment Problem in
Industry 4.0

Tarik Terzimehic1, Sebastian Voss1, Monika Wenger1, Vincent Aravantinos1

Abstract:

The fourth industrial revolution requires a dynamically reconfigurable control software, in order to
cope with frequent product and production process changes of manufacturing systems. To dynamically
reconfigure control software, we have to calculate valid or optimal deployment configurations.
Previous research applies Design Space Exploration (DSE) techniques embedded into model-based
design methodologies for solving this deployment problem. However, current research either aims at
domains other than industrial automation or applies simple and, for real-life problems, not applicable
constraints and objectives. Thus, the deployment of software components to hardware components is
still an exhausting and manual task. In this work, we take first steps towards automatically optimized
deployment of industrial automation systems. We propose the concept of DSE for solving the
deployment problems of IEC 61499 based control software applications. In order to reduce the
exploration space, we identify the industry 4.0 specific constraints and objectives. Furthermore, we
extend the IEC 61499 system and application models’ descriptions by proposing relevant hardware and
software annotations. The presented concept could be used in conjunction with different optimization
and satisfiability solving algorithms, such as SMT or linear programming.

Keywords: Design Space Exploration; Model-based Development; Deployment; IEC 61499;
Industry 4.0

1 Introduction

Frequent product and production process’ changes in current manufacturing systems make
predetermined processes and system configurations infeasible [Sp16]. Thus, dynamic
reconfigurability and flexibility of control software are named as key prerequisites towards
the fourth industrial revolution, referred to as industry 4.0 [Wa16]. In order to reconfigure
the control software consisting of software components (SWCs), a proper configuration has
to be generated. The configuration can comprise a particular deployment (or mapping) of
SWCs, i.e. deployable software units, to hardware components (HWCs), e.g. Programmable
Logic Controllers (PLCs), further referred to as solely deployment. A valid deployment
satisfies certain constraints, such as maximal hardware cost, energy consumption etc. Since
Industry 4.0 requires an optimal manufacturing process [Bu17], we may strive to generate a
1 fortiss GmbH, Model-based systems engineering, Guerickestraße 25, Munich, Germany, {terzimehic,voss,

wenger,aravantinos}@fortiss.org

https://creativecommons.org/licenses/by-sa/4.0/
{terzimehic, voss, wenger, aravantinos}@fortiss.org
{terzimehic, voss, wenger, aravantinos}@fortiss.org

2 Tarik Terzimehic, Sebastian Voss, Monika Wenger, Vincent Aravantinos

deployment that is optimal with respect to the given objectives (e.g. calculate a deployment
configuration that leads to the minimal energy consumption). Additionally, a scheduler
(e.g. the execution order of the SWCs or temporal order of communication [BV13]) can be
generated as part of the configuration.

Due to the increased complexity of current current manufacturing systems (i.e. the growing
number of SWCs and HWCs, their properties and specifications), it is difficult to manually
find a valid or an optimal deployment configuration [Ed17]. When manual design decisions
are difficult due to a large exploration space, design space exploration (DSE) techniques
are applied. DSE defines the process of finding a solution (or set of solutions) within a
constrained solution space [Sc10].

DSE can be used in conjunction with model-based development (MbD), which provides a
system abstraction with suitable models. Different models describe the system from different
perspectives. For example, a logical or software model describes the functionality of the
system, whereas a technical or hardware model describes the platform/hardware specific
aspects of the system. Thereby the system’s functionality can be developed independently
from the hardware specification, which is an important advantage of this approach especially
for complex systems [Ar15].

Numerous research studies apply DSE techniques embedded into MbD methodologies with
the aim to find appropriate configurations, i.e. valid or optimal deployments and schedulers
[Ed17, ZKC16, AB17]. For example, [Ed17] uses the Satisfiability modulo theories (SMT)
solver to explore the design space. However, it does not fit industrial control software, as
(1) it applies automotive-specific constraints, objectives and annotations and (2) the used
model-based tool is based on the FOCUS theory [BS01], which is not common in industrial
control software and therefore probably unfamiliar for process engineers and technicians.

Common industrial control software applications are based on the IEC 61131-3 standard
for PLCs, developed with the main goal to unify the way of programming PLCs. Moreover,
the standard introduced function blocks (FBs) to improve the quality, modularity, and
reusability of control applications. However, the usage of global variables links the FBs
via hidden interfaces. The IEC 61499 standard, which represents an extension of the
IEC 61131-3 standard, also uses FB as the main element of function encapsulation, but
completely forbids the usage of global data. Therefore, the FBs are decoupled from its
environment and can be used and tested separately, thereby greatly increasing the reusability
and reconfigurability of IEC 61499-based control applications. Furthermore, the IEC 61499
defines basic reconfiguration services, which provide the possibility to reconfigure the
application during runtime [Le11].

In [SJC14], a SMT solver is applied to generate valid reconfigurations of IEC 61499-based
control systems. This work describes the control software architectures and the high-level
requirements with logical formulae. The logical formulae are used as input for a SMT
solver. The SMT solver calculates deployment configurations for deploying FBs multiple

Applying DSE for Solving the Deployment Problem in Industry 4.0 3

times across HWCs according to the given high-level requirements. Nevertheless, tackling
real-life problems would require identifying more complex constraints and considering the
optimization problem, i.e. finding objectives for the industrial automation domain. Addition-
ally, the specifics of IEC 61499-based systems should be considered more thoroughly, such
as relations between devices and resources, inter-device communication and configurations
overheads etc.

In this work, we take first steps towards an automatically optimized deployment of industrial
automation systems. Thereby, we explore the specifics and needs of the industrial automation
domain while focusing on IEC 61499-based systems, as they provide, among others, means
for dynamic redeployment. In particular, we identify software and hardware annotations,
as well as constraints and objectives that can be used to specify desired deployment
configuration. Moreover, we exhibit the applicability of DSE with the identified annotations,
constraints and objectives on an industry 4.0 relevant case study.

2 Model-based Development with IEC 61499

In this section we describe the IEC 61499 models, that we extend by deployment relevant
annotations, constraint and objectives. The IEC 61499 standard for distributed industrial
control systems proposes the usage of different models in order to achieve software and
hardware abstractions.

2.1 Software Abstraction with the IEC 61499 Application model

IEC 61499 applies an application centric design, where the functionality of the system is
defined within the first step. This is done within the Application model, which is independent
of the hardware configuration. The main element of the Application model is a FB. A
FB represents a software component that encapsulates functionality and interacts with
other components via data and event interfaces. Thus, the Application model is created by
instantiating and interconnecting FBs [ZV09].

The IEC 61499 FBs are event driven, which is one of the major differences to other
languages in the domain of industrial automation. Thus, FBs require input events (i.e. red
connections delivered to the top left interface part of the FB, see upper part of Figure 1) to
start processing input data (i.e. blue connections delivered to the bottom left interface part
of the FB) [We16].

2.2 Hardware Abstraction with the IEC 61499 System & Distribution models

The System model is used in the second step to specify the hardware configuration, i.e. the
control devices and communication systems (bottom of Figure 1). It comprises devices

4 Tarik Terzimehic, Sebastian Voss, Monika Wenger, Vincent Aravantinos

and the communication infrastructure. A device (e.g. a PLC) can contain several resources
that represent an independent execution environments for FB networks. They may provide
specific functionality (e.g. special computation hardware), but may as well solely be used
for the logical separation of the device onto smaller independent entities [ZV09].

Finally, the functionality from the Application model is mapped to the System model,
which results in the Distribution model (illustrated by arrows in Figure 1). In this step the
application’s FBs will be deployed to the control devices where they are supposed to be
executed.

2.3 Dynamic Redeployment with the IEC 61499 Management Model

To create and modify an IEC 61499 FB network as flexible as possible, the standard offers a
management interface with special management commands. These commands can be run
offline or online in order to, e.g., create or delete particular FB instances or their connections,
start or stop the FB instances (or whole applications), as well as query the data values or FB
attributes [SC05]. In this way the IEC 61499 facilitates the mechanism for deploying or
dynamically redeploying control software applications.

Fig. 1: IEC 61499 Application, System and Distribution models

3 Applying DSE to Resolve the Deployment Problem in Industry 4.0

Deployment in the industrial automation domain is still a manual and exhausting task of
experienced automation engineers. The widely used IEC 61131 control applications are
developed in close conjunction with hardware platforms, i.e. used HWCs, and thus, mapping
considerations are not necessary. The IEC 61499 standard provides means to develop SWCs
independently from the hardware platform and then manually map particular SWCs (i.e. FB
networks) to the desired HWCs, which results in the Distribution model. While a manual

Applying DSE for Solving the Deployment Problem in Industry 4.0 5

Tab. 1: Constraints, objectives and annotations for IEC 61499-based systems

Constraint Objective SW Annotation HW Annotation
Cost
limit costs of HWCs Min. costs - Cost
Number of HWCs
limit number of used HWCs

Min. number
of used HWCs - -

HW capabilities
allocate SWCs to required HWCs -

Required HW
capabilities

Available HW
capabilities

RTE capabilities
allocate SWCs to compatible RTEs -

Required FB
types

Available
FB library

Parallel execution
execute SWCs parallel - Parallel SWCs

Max. number
of resources

Functional coupling
group coupled SWCs

Max. cohesion,
min. coupling Coupled SWCs -

Memory
prevent memory exceeding

Min. memory
usage pro HWC Memory size

Available
memory

SIL
allocate SWCs to reliable HWCs Min. total SIL Safety level Safety level
Redundancy
allocate SWCs to several HWCs - Number of copies -

deployment is acceptable for a small number of components, constraints and objectives,
systems that are more complex require this process to be optimally automated. In order to
do so, an automation engineer has to be able to specify the deployment problem.

We specify the deployment problem through constraints that limit the set of possible
allocations due to different attributes. Moreover, we can express optimization demands,
i.e. objectives, that optimize a limited set of solutions towards certain directions. Table 1
presents the constraints, objectives and corresponding annotations, applicable for IEC 61499
based systems.

Cost constraint and objective The economical aspect is crucial for the construction and
operation of automation plants. For that purpose we require a hardware cost annotation,
which is also often applied in the automotive domain [ZKC16]. For example, the automation
engineer can specify the cost of HWCs (e.g. PLCs) while modeling the hardware architecture
(e.g. within System model of IEC 61499 architecture). Subsequently the engineer can specify
the constraint, so that the total cost of whole applied hardware infrastructure does not exceed
a certain maximal value. We can also strive to minimize the whole cost, in which case we
define an optimization objective.

Number of devices constraint and objective Due to economical (i.e. cost reduction)
or/and technical aspects (i.e. easier maintenance, decreased latency as result of increased

6 Tarik Terzimehic, Sebastian Voss, Monika Wenger, Vincent Aravantinos

intra-node communication etc.) we can limit or minimize the number of used HWCs, while
calculating valid or optimal deployment configurations, respectively.

HW capabilities constraint Some SWCs or applications require certain hardware capa-
bilities, such as special computation hardware, access to particular sensors or actuators,
communication interfaces etc. Thus, an engineer should be able to either (1) manually
allocate particular SWCs to particular HWCs and calculate the mapping of remaining
components according to other specified constraints and/or objectives (as it is done in
[Ed17]), or (2) specify the required and offered capabilities within the Application and
System models, respectively. For example, a SWC (i.e. FB network in the IEC 61499-based
systems) requires access and a HWC (i.e. device in the IEC 61499-based systems) provides
access to the light barrier sensor within a conveyor. By applying this constraint, we assure
deployment of the SWC to the required HWC.

RTE capabilities constraint If we want to dynamically (re)deploy applications, we need to
consider the run-time environment (RTE) running on the HWC. Questionable is whether
the RTE of the HWC we want to deploy the SWC(s) to, contains all necessary FB types,
since only available FB types can be instantiated. Thus, it should be possible to describe
the capabilities of the RTE, i.e. to specify its FB library. The required FB types are
already specified within the Application model. Hence, only HWCs whose RTEs contain all
necessary FB types can be considered as deployment targets.

Parallel execution constraint A device (i.e. HWC) in a System model can contain
resources, which can be regarded as independent execution containers for FB applications.
Resources provide a logical separation of the device onto smaller independent entities. By
deploying applications onto multiple resources, we can achieve a quasi parallel execution2.
However, a device cannot contain an arbitrary number of resources without jeopardizing its
computational and memory performances. Thus, the annotation of the maximal number of
resources within one device should be possible. On the other hand, the Application model
should provide mechanisms to denote parallel FB networks, i.e. the parts of the applications
that are supposed to run concurrently.

Functional coupling constraint and objective Similarly, we may want to couple some
applications, so that they are executing within the same device, or even within the same
resource. Motivation for that could be the lower latency between applications, i.e. increasing
the intra-device and decreasing inter-device communications. Thus, we can define the
functional coupling constraint by selecting the FB networks supposed to be executed
within the same device. Alternatively, we can specify an objective, in order to maximize
cohesion and minimize coupling, i.e. maximize the intra-device and minimize inter-device
communications.

Memory constraint and objective The annotation of hardware’s memory capacity, soft-
ware’s memory size and the constraint, that prohibits exceeding the hardware memory

2 quasi parallel since resources can only be processed in parallel if they run on different cores of the CPU

Applying DSE for Solving the Deployment Problem in Industry 4.0 7

limits, is well known in the automotive domain [ZKC16]. Such memory constraint could be
useful in the IEC 61499 systems, whereas the Application model’s size could be calculated
automatically, according to the used FB instances. If the goal is to dynamically add new
components to the device, we can optimize memory usage by applying memory objectives.

SIL constraint and objective Safety is the most important process plant characteristic
[Wa17]. One way to increase the safety is to deploy SWCs annotated with certain SIL only to
HWCs of the same or higher SIL [VS13], i.e. to HWCs that are reliable enough. Thereby, by
applying the SIL constraint, safety-critical components are equipped with reliable software
and hardware.

Redundancy constraint Sometimes it is required that particular software components
are deployed multiple times across hardware resources, in order to improve the reliability
[SJC14]. Therefore, we introduce the redundancy annotation for IEC 61499 FB networks
and define the redundancy constraint, with the aim to deploy particular FB networks to the
several HWCs.

4 Evaluation

This section provides a domain-specific case study to exhibit the DSE applicability for
solving the deployment problem.

4.1 Cold Rolling Mill Demonstrator

With the aim to demonstrate the DSE application for calculation of deployment configurations,
we consider the aluminum cold rolling mill demonstrator as an example. The aluminium
cold rolling mill consists of two main parts, the rolling process and the pallet transportation
system (PTS). For the sake of simplicity, this case study focuses solely on the PTS. The PTS
transports pallets with coils to different working steps of the plant. The PTS is composed of
several roller conveyors, slider conveyors and turn tables. The roller conveyors are supposed
to perform the entire transportation task. Each roller conveyor has four light barriers to
detect the pallet position. The pallet position is used to adapt the transportation speed and
detect the movement direction. The slider conveyors move pallets between different rows of
roller conveyors. The turn tables rotate the coil to change the winding orientation of the
aluminium band on the coil.

4.2 Case Study: Failure Recovery Without Downtimes

Availability, i.e. continuous operation of the plant without downtime, is named as one of the
most important characteristics of rolling mills [Wa17]. Hence, we examined the applicability

8 Tarik Terzimehic, Sebastian Voss, Monika Wenger, Vincent Aravantinos

Fig. 2: Concept for IEC 61499 Distribution model generation and redeployment

of the identified constraints, objectives and annotations while striving for high availability
of such plants.

While creating the Application model (depicted in upper part of Figure 2), we specify
software annotations for each SWC (i.e. FB network, represented as blue blocks in Figure 2).
For instance, we specify required hardware skills (e.g. access to conveyor’s IOs) and safety
levels to require a higher safety measures for the safety-critical components. In the second
step, we take care of the hardware architecture, i.e. System model, presented in middle part
of Figure 2. In order to save costs, it is possible to use one device (i.e. PLC, represented as
grey block in Figure 2) to control several PTS’s components, as the components require
less then ten IOs. One device can have several resources to independently run several
FB networks. However, we annotate the maximal number of resources within a device to
avoid jeopardizing its computational and memory performances. Moreover, we consider
redundancy in case one of the devices loses its functionality. Thus, every device will have
access to several PTS’s components, which are annotated as available hardware capabilities.
In the example from Figure 2, each device can have up to four resources running. Two of
them are used to independently control two different components (depicted with red and
blue solid lines in Figure 2). For redundancy reasons, each device has access to four other
components (depicted with red and blue dashed lines in Figure 2), controlled by another
devices. Thus, it is possible to redeploy FB networks without changing the connections
between hardware components.

After modeling the logical and hardware architectures, as well as specifying their annotations,
we define constraints for calculating valid deployment configurations. We may strive to

Applying DSE for Solving the Deployment Problem in Industry 4.0 9

deploy SWCs to the HWCs with required SIL, HW and RTE capabilities, while limiting the
number of running resources within each HWC. When the desired constraints are specified,
a solver (e.g. SMT solver) is launched to generate a set of valid deployment configurations.
To increase the quality of the solution, a quality attribute such as HWC load is defined
(i.e. minimize number of SWCs on each HWC). Thus we select valid configuration for
which HWCs are less stressed and then perform the deployment according to the selected
configuration.

During runtime we monitor the state of the components. In case a certain HWC losses its
functionality or becomes overloaded (e.g. PLC2), we select another valid configuration
from the set of the calculated configurations. Here we apply the second best configuration
according to the quality attribute (i.e. HWC load), since the first one is invalidated due to
the PLC2 failure. Alternatively, we can strive for a configuration that leads to less HWCs’
changes. After configuration selection, we redeploy necessary SWCs using IEC 61499
reconfiguration services.

This way, we achieve a failure recovery without downtimes, as we apply another valid
configuration without a time exhaustive recalculation. The recalculation of the configurations
considering actual system status can be performed afterwards, during the system runtime.

5 Conclusion & Future Work

By analyzing the specifics of the industrial automation domain, more precisely IEC 61499
based systems, we identified constraints, objectives and annotations applicable for deploy-
ment problem definition. Thereby, we took first steps towards an automatically optimized
deployment of industrial automation systems. The domain-specific case study exhibits the
applicability of the DSE approach in conjunction with IEC 61499 models in an industry 4.0
relevant scenario, namely failure recovery without downtime.

Within the next step, we intend to implement and validate the proposed concept by using
Eclipse 4diac, an open source, IEC 61499-compliant engineering framework [SZV08]. We
plan to extend the framework by the identified annotations, constraints and objectives, as
well as the deployment synthesis model. Moreover, we will continue identifying relevant
constraints, objectives and annotations.

References
[AB17] Alexander Diewald, Sebastian Voss; Barner, Simon: A Lightweight Design Space Exploration

And Optimization Language. In: CEUR Workshop Proceedings. 2017.

[Ar15] Aravantinos, Vincent; Voss, Sebastian; Teufl, Sabine; Hölzl, Florian; Schätz, Bernhard:
AutoFOCUS 3: Tooling concepts for seamless, model-based development of embedded
systems. In: CEUR Workshop Proceedings. 2015.

10 Tarik Terzimehic, Sebastian Voss, Monika Wenger, Vincent Aravantinos

[BS01] Broy, Manfred; Stolen, Ketil: Specification And Development Of Interactive Systems Focus
On Streams Interfaces And Refinement. Springer, 2001.

[Bu17] Bundesministerium für Wirtschaft und Energie (BMWi): Beziehungen zwischen I4.0-
Komponenten – Verbundkomponenten und intelligente Produktion. Technical report, 2017.

[BV13] Becker, Klaus; Voss, Sebastian: Towards Dynamic Deployment Calculation for Extensible
Systems using SMT-Solvers. In: 1st Open EIT ICT Labs Workshop on CPS Eng. 2013.

[Ed17] Eder, Johannes; Zverlov, Sergey; Voss, Sebastian; Khalil, Maged; Ipatiov, Alexandru: Bringing
DSE to life: exploring the design space of an industrial automotive use case. In: 20th Int.
Conf. on MdE Lang. and Syst. (MODELS). 2017.

[Le11] Lepuschitz, Wilfried; Zoitl, Alois; Vallée, Mathieu; Merdan, Munir: Toward self-
reconfiguration of manufacturing systems using automation agents. IEEE Trans. on Systems,
Man and Cybernetics, 2011.

[SC05] SC65B, IEC: , IEC 61499-1 Function Blocks for Industrial Process Measurement and Control
Systems. Part 4: Rules for compliance profiles, 2005. Geneva.

[Sc10] Schätz, Bernhard; Schätz, Bernhard; Hölzl, Florian; Lundkvist, Torbjörn: Design-Space
Exploration through Constraint-Based Model-Transformation. In: 17th IEEE Int. Conf. and
Workshops on Eng. of Comp. Based Syst. 2010.

[SJC14] Sinha, Roopak; Johnson, Kenneth; Calinescu, Radu: A scalable approach for re-configuring
evolving industrial control systems. In: 19th IEEE Int. Conf. on Emerging Technologies and
Factory Automation. 2014.

[Sp16] Spindler, M.; Aicher, T.; Vogel-Heuser, B.; Günthner, W.: Efficient Control Software Design
for Automated Material Handling Systems Based on a Two-Layer Architecture. In: Int. Conf.
on Adv. Log. and Trans. 2016.

[SZV08] Strasser, Thomas; Zoitl, Alois; Valentini, Antonio: Framework for Distributed Industrial
Automation and Control (4DIAC). In: 6th IEEE Int. Conf. on Ind. Info. 2008.

[VS13] Voss, Sebastian; Schatz, Bernhard: Deployment and scheduling synthesis for mixed-critical
shared-memory applications. In: Proceedings of the Int. Symp. and Workshop on Eng. of
Comp. Based Syst. 2013.

[Wa16] Wang, Shiyong; Wan, Jiafu; Li, Di; Zhang, Chunhua: Implementing Smart Factory of
Industrie 4 . 0 : An Outlook. Int. Journal of Dist. Sensor Net., 2016, 2016.

[Wa17] Wagner, Constantin; Epple, Ulrich; Metzul, Alfred; Debus, Kai; Treivous, Vadim; Tarnow,
Matthias; Helle, Christoph: Requirements for the Next Generation Automation Solution of
Rolling Mills. In: 43rd Annual Conf. of the IEEE Ind. Elec. Society. 2017.

[We16] Wenger, Monika; Zoitl, Alois; Blech, Jan Olaf; Peake, Ian; Fernando, Lasith: Cloud based
monitoring of timed events for industrial automation. In: Proceedings of the Int. Conf. on
Parallel and Dist. Syst. 2016.

[ZKC16] Zverlov, Sergey; Khalil, Maged; Chaudhary, Mayank: Pareto-efficient deployment synthesis
for safety-critical applications in seamless model-based development. In: Proceedings of the
8th European Congress on Embedded Real Time Software and Systems. 2016.

[ZV09] Zoitl, Alois; Vyatkin, Valeriy: IEC 61499 architecture for distributed automation: The "glass
half full"view. IEEE Industrial Electronics Magazine, 2009.

cba

Herausgeber et al. (Hrsg.): MBEES,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2017 1

Exploration of hardware topologies and complexity reduction

Johannes Eder1

Abstract: This paper shall give an overview over a dissertation project in the area of design space
exploration for distributed, embedded systems. As the engineering of distributed embedded systems is
getting more and more complex due to increasingly sophisticated functionalities demanding more and
more powerful hardware, automation is required in order cope with this rising complexity. Using a
model based systems engineering approach enables design space exploration methods which provide
such automations, formalizing the problem in order to be solvable e.g. by SMT solvers. However, due
to the complexity of the systems, those problems cannot be efficiently solved. It is thus furthermore
required to provide mechanisms to reduce the complexity. This can be achieved by using domain
specific knowledge of the systems and apply machine learning approaches to learn about the problem
and thus provide means to reduce its complexity.

1 Introduction - System engineering and its complexity

The design of distributed, embedded systems is characterized by an ever-growing complexity
of those systems. This is caused by an increasing set of functionality, as well as an increase
in complexity in the underlying hardware architecture and topology. Considering e.g. the
automotive domain, the introduction of more and more autonomous functions not only
increases the amount of software in the vehicles but also demands hardware capable of
executing this software.

Using a classical systems engineering approach like the V-Model, as proposed e.g. in
the ISO 26262 for functional safety of automotive vehicles, the development process is
divided into the product development on software and hardware level and the integration of
those two parts. In the following the rising complexity of not only software, hardware and
integration but also of the aspect of variability will be outlined which demands automation
support in the development process of distributed embedded systems.

Software complexity The main driver of the complexity of software for distributed
embedded systems are increasingly sophisticated functionalities e.g. in the automotive
domain, due to the trend towards more and more autonomous vehicles resulting in a
rising number of driver assistance and autonomous functions. In 2007, e.g., a premium
car contained already 270 user functions resulting in 2500 ’atomic’ software functions
1 fortiss GmbH, MbSE, Guerickestrasse 25, 80805 Munich, eder@fortiss.org

https://creativecommons.org/licenses/by-sa/4.0/
eder@fortiss.org

2 Johannes Eder

[Pr07]. A substantial part of this complexity is caused by the intricate dependencies of these
functions, complicated by the different, and most often contradicting, requirements of these
functions.

A further driver of complexity are new arising scenarios like plug&play capability of
the systems enabling software updates, addition of new software and moving of software
functions from one ECU to another ECU. As a next step this capability has to be provided
over the air. Consequently, a further scenario arises, where vehicle functions are executed in
the cloud. Figure 1 provides an outline of such future scenarios in the top row.

All of these scenarios share one common problem: it has to be ensured/verified that
the requirements of the system are still met. This entails that mechanisms have to be
provided which enable the verification of those systems at any point in time. As of now
these mechanisms can only be provided during development and due to extensive testing.
Considering the above mentioned plug&play scenarios, the vehicles themselves have to able
to verify on their own if their (software) system works correctly, in the future.

Hardware complexity The main driver of complexity considering the hardware in
distributed embedded systems is the mere number of heterogeneous electrical control units
(ECUs) connected via multiple networks (different bus systems and gateways). In 2007,
those hardware architectures contained up to 67 ECUs [Pr07]. In 2010, automotive hardware
architectures were already consisting out of up to 100 ECUs [ZP12][PBK10].

As a result, the trend goes toward more centralized, multi-core architectures as the hardware
architectures would otherwise too complex on the one hand, and on the other hand
increasingly sophisticated driver assistance and autonomous functions require more powerful
hardware [So13]. Regarding figure 1, the trend from today’s distributed hardware (E/E)
architectures goes over domain centralized E/E architectures to vehicle centralized E/E
architectures [GL16], hence, towards more integrated hardware architectures including
cloud interoperability. In the aerospace domain the concept of centralized architectures can
already be found in the IMA or ARINC 653 standard.

Consequently, hardware architecture layouts/topologies are changing from approximately
100 ECUs connected via various buses and gateways to smaller more centralized architectures
with more powerful resources considering e.g. computational capabilities. Yet, figure 1
only proposes a vague vision of an E/E (hardware) architecture of the future. The future
hardware topology of an automotive E/E is thus an open question.

Integration complexity Concerning the development according to a standard like ISO
26262 as mentioned before, integration between both software and hardware is a substantial
part. One part of this integration is the mapping of software to hardware where its
functionality will be executed. Considering a distributed embedded system this mapping has

Exploration of hardware topologies and complexity reduction 3

Fig. 1: Trends in Automotive E/E Architectures [GL16]

a big implication as it poses a certain demand on the communication resources which are
used, due to the fact, that executing a certain software function on one ECU in the system
may require input from another software function located on a different ECU. Moreover,
such deployment has to meet constraints which have to hold. Considering the ISO 26262,
especially concerning safety constraints. Taking into account that the number of software
functions is ever growing while the hardware architectures of the future will change from
large distributed to more centralized systems, the integration of the parts themselves is
getting more complex, too.

Variability is a fourth driver of complexity as products are not only more and more tailored
towards individual needs but also due to regionalization covering aspects such as customer
needs and legal issues.

Considering (software) functions of a system, the number of functions differs due to customer
needs and region specific variants. This means that some functions may be optional and
some functions may be required only in specific regions or even forbidden in some other
regions.

Considering the underlying hardware, the above mentioned functions may have an impact
as e.g. less functions would require less ECUs which results in a cheaper product. On the
other hand, the ECUs or networks themselves may exist in different variants considering
cost, performance and safety attributes to mention just a few.

So during system development one has to cope with the rising demand of individualization
of its products while at the same time trying to minimize in particular the cost of the product
regarding all possible product variants.

4 Johannes Eder

2 Problem statement

In order to effectively manage the ever increasing complexity in the design of embedded
systems, development processes in general, and model-based approaches in particular,
support the development. They are assuming an idealized (component-based) model of
computation, abstracting away from implementation issues like interference aspects of the
execution platform resulting from shared computation or memory resources.

However, as requested by the ISO 26262, those simplifying abstractions must be met by
development steps which ensure that the assumptions behind these abstraction are not
violated by the properties of the implementation platform. For instance, during SW-/HW-
integration, platform mechanisms must avoid an overload in bus communication, such that
messages do not arrive to late or even get lost. The distribution of software across different
execution platforms is thus highly affecting different aspects of such an integration. Due to
the complexity of the design alternatives, automated support for selecting optimal solutions
is needed. A question whose answer is more and more demanded in industry considering
systems engineering is hence also one of the most challenging ones:

"What is a good or even optimized/optimal system design and how to find
it - automatically?".

The definition of what a "goodör even öptimalßystem design looks like, requires a detailed
(formalized) understanding of the different parts of the system which are concerned, as well
as the requirements, namely the constraints and optimization objectives, which limit the set
of possible designs. It is furthermore highly dependent on the various aspects of system
design. In particular, considering a (optimal) synthesis of a technical HW platform, one has
to integrate knowledge from various parts, to answer this question:

1. Software parts (components) of the system which represent its functionality, pose
resource demands w.r.t. to the application considering e.g. a certain computing power
or communication.

2. Hardware parts (components) which actually provide computing and communication
capabilities and are composed according to certain hardware layout rules.

3. The deployment which assigns software parts to hardware parts where their functio-
nality can be realized.

4. Variability of software parts and hardware parts leading to different deployments and
thus to different variants of system designs.

The (automatic) identification of valid designs, in particular valid hardware designs, is a
manually unsolvable task, especially considering not only the rising complexity within the

Exploration of hardware topologies and complexity reduction 5

development of software and hardware, but also considering the different variants in the
development especially of the hardware part. A sensor for example may exist in different
variants differing in properties such as cost or performance but also in the set of possible
interfaces enabling a connection to differing communication units (buses). A decision in
favor of a certain sensor is thus affecting the whole hardware topology as its interface
limits the set of possible communication resources which can be used. Striving for an
optimal hardware topology is furthermore closely intertwined with the deployment of SW
components to HW components due to the fact that software is demanding a certain amount
of computational resources (memory, performance,..) in order to be executed as well as
communication resources enabling exchange of information. So, the problem of finding an
optimal hardware topology together with a deployment, while at the same time handling
variability in order to come up with an optimal system design, demands automation.

3 Contribution

The envisioned contribution of this thesis is two-folded. Firstly, we want to propose a
synthesis methodology capable of synthesizing a distributed embedded systems architecture
while at the same time considering variability aspects of this architecture. Secondly, we
want to provide a classification of complexity for this domain specific scenario in order to
be able to increase the efficiency of the proposed methodology.

3.1 Hardware Topology Synthesis

Considering the future vision of E/E architectures depicted in figure 1, the envisioned
contribution of this thesis goes even one step further such that the E/E architecture is not
fixed at all. Using the 150% model approach - which is common in variability research - we
want to propose an approach that synthesizes a E/E architecture topology. This entails that
given 150% of all possible elements of an E/E architecture and a (100%) component-based
network of all SW-components (functions) of the system under development, the goal of this
thesis is not only to choose 100% of the needed E/E elements but also to set up a respective
topology of these elements.

At the same time, all requirements for this system have to be considered. On the one
hand, constraints which limit the set of possible solutions. Firstly, those constraints may
be deployment specific such that the limit they set of possible deployments of certain SW-
Components to certain ECUs due to e.g. safety requirements. Secondly, those constraints
may be topology specific, such that they restrict the set of possible connections in the
E/E architecture, e.g. the connection of ECUs to communication devices such as buses or
gateways. On the other hand, optimization objectives have to considered, which optimize
the topology into certain directions such as the overall cost of the E/E architecture or the
number of ECUs.

6 Johannes Eder

Specifically, this entails the following sub-contributions.

1. Dedicated models of the technical (E/E) architecture, covering variability as well as
topological aspects.

2. A respective language to formalize the synthesis problem. A first step has been done
in [Ed17] covering the deployment aspects of the methodology. The language has to
be extended in order to able to express topological and variability aspects.

3. A transformation of the language into the SMTLIB2 language standard in order to be
able to solve problems expressed in this language with state-of-the-art SMT solvers.

4. A dedicated exploration methodology providing an overall concept for such a synthesis.
(Categories, RuleSets, Process, In and Output Models)

The resulting technical architecture may even be disruptive, as the outcome can not be
foreseen. It specifically takes into account the available 150% of the technical architecture
elements and calculates, regarding the constraints which have to hold, an optimal topology
considering the given optimization objectives. So the resulting technical architecture may
differ very largely from today’s E/E architectures.

3.2 Classification of Complexity for (this) domain-specific synthesis-scenario

State of the art SMT solvers like Z3 have become powerful tools in order to solve problems
like the calculation of an optimal topology or the deployment of SW components to hardware
components. However, already a deployment problem such as mentioned in [Ed17] (31 SW
components, 22 HW components (ECUs and buses), 71 constraints, 6 objectives) takes
about an hour to be solved. Considering that a topology synthesis takes a 150% model of
HW components the number of technical components alone raises the problem complexity
such that solving this problem will take more than a few hours if not days. Reducing the
complexity of such a problem is thus an inevitable step to still make use of an automated
solving of such problems.

In this thesis we want to use machine learning to learn about the complexity of the given
problem. In particular, we want to build up a connection between industrial input models,
which, given to our proposed synthesis, produce a hardware topology as output. This entails
the following contributions:

1. Using a supervised learning approach, we want to provide an estimation of the
calculation time for a topology synthesis given a specific input model. This includes
the classification of input architectures according to certain criteria which would
enable the prediction of the time which is needed for a synthesis for a specific input
model.

Exploration of hardware topologies and complexity reduction 7

2. Using a supervised learning approach we want to provide a configuration for SMT
solvers which suits best for the given input models such that we can reduce the
calculation time for a topology synthesis. Considering that e.g. the Z3 SMT solvers
provides thousands of different user configurable tactics choosing the right tactic may
have strong impact on the solving time. This also includes a classification of input
architectures according to certain criteria which would enable the selection of proper
solver configurations, namely tactics, in order to solve the given input model in the
least possible time.

4 Related work

This section shall give a brief overview over the existing work in the area of design space
exploration, focusing on the area of solving the deployment problem especially in the
automotive domain 4.1. Moreover, also outlining the work which has been conducted
on topological synthesis 4.2. Lastly, a very brief overview over reduction of complexity,
especially, for SAT based problems will be provided in 4.3.

4.1 Deployment Synthesis

There has been a variety of works conducted in the area of deployment synthesis often
combined with schedule synthesis. Voss and Schätz proposed the joint synthesis of
deployment and schedules for mixed critical, shared-memory applications in [VS13] and
with special focus on automotive safety requirements (ISO 26262) in [SVZ15]. Both
approaches [VS13] and [SVZ15] optimize a deployment of software tasks to computing
resources by multiple optimization criteria, considering different constraints and additionally
calculating schedules for these deployments. However they are only considering a fixed
hardware topology with no variability considerations.

The deployment problem in the context of fail operational systems is presented by Becker
and Voss in [BV15] focusing especially on failure scenarios in a system and the resulting
change considering the deployment of software functions. This approach focuses more on
the fail operational aspect of embedded systems by pre-calculating possible deployments to
enable graceful degradation in case of a system failure. Thus, a fixed hardware topology
and no variability is regarded in this approach.

[Ro17] describe the synthesis and exploration of multi-level, multi perspective architectures
of automotive embedded systems. This work considers multiple layers in the system
specifically the deployment of (software) functions or components to the hardware layer
considering execution units, communication units and the power topology. However, even
though they are considering variability through all layers, they are considering a fixed
hardware topology, varying only in the type or optionality of components.

8 Johannes Eder

4.2 Topology Synthesis

Bajaj et al. propose an optimized calculation of cyber-physical system architectures in [Ba15]
with focus on safety and reliability. Taking into consideration the reliability of the system
by using its interconnection structure, they are synthesizing topologies. This approach
calculates an optimal hardware network topology using different optimization objectives
while at the same time regarding constraints which have to be met. Thus, this approach
starts with a completely unfixed hardware topology calculating an optimal topology of
hardware resources. However, they do not consider the deployment of software tasks which
could (heavily) influence the topology considering the computation and communication
resource usage. They are furthermore not considering variability.

A multi objective routing and topology optimization approach for networked embedded
system is presented by [Gl08]. They are allocating a network of communication processes
to a set of resources which are themselves connected. Although this work considers the
optimization of a network topology of an embedded system, the network itself is fixed.
Thus the topology of the system may only change in the usage or non-usage of resources.
Variability of resources is not considered in this work.

4.3 Complexity reduction

There has been a variety of work conducted on complexity reduction particularly in reducing
the complexity of boolean satisfiability problems.

[Cr96] and [De16] e.g. especially focused on finding symmetry breaking predicates
considering SAT problems in order to gain massive speed ups in solving those problems.

In [KJS10] Kang et al. applied symmetry breaking predicates in a design space exploration
context aiming to reduce the complexity. They showed the applicability of there by using a
classical deployment problem.

5 Conclusion

Concluding, this thesis shall firstly provide a hardware topology synthesis approach and
methodology using models on software and hardware level. On the hardware different
variants of elements shall be regarded. Secondly, the complexity of such problems shall be
provided. This can be achieved by using domain specific knowledge and the use of machine
learning mechanisms providing information to .

Exploration of hardware topologies and complexity reduction 9

Literaturverzeichnis
[Ba15] Bajaj, Nikunj; Nuzzo, Pierluigi; Masin, Michael; Sangiovanni-Vincentelli, Alberto: Optimi-

zed Selection of Reliable and Cost-Effective Cyber-Physical System Architectures. Design,
Automation & Test in Europe Conference & Exhibition (DATE), 2015, S. 561–566, 2015.

[BV15] Becker, K.; Voss, S.: Analyzing Graceful Degradation for Mixed Critical Fault-Tolerant
Real-Time Systems. In: 2015 IEEE 18th International Symposium on Real-Time Distributed
Computing. S. 110–118, April 2015.

[Cr96] Crawford, James; Ginsberg, Matthew; Luks, Eugene; Roy, Amitabha: Symmetry-breaking
predicates for search problems. KR, 96:148–159, 1996.

[De16] Devriendt, Jo; Bogaerts, Bart; Bruynooghe, Maurice; Denecker, Marc: Improved static
symmetry breaking for SAT. Lecture Notes in Computer Science (including subseries
Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 9710:104–122,
2016.

[Ed17] Eder, Johannes; Zverlov, Sergey; Voss, Sebastian; Khalil, Maged; Ipatiov, Alexandru:
Bringing DSE to life: exploring the design space of an industrial automotive use case. In:
2017 ACM/IEEE 20th International Conference on Model Driven Engineering Languages
and Systems (MODELS). 2017.

[Gl08] Glaß, Michael; Lukasiewycz, Martin; Wanka, Rolf; Haubelt, Christian; Teich, Jürgen: Multi-
objective routing and topology optimization in networked embedded systems. Proceedings
- 2008 International Conference on Embedded Computer Systems: Architectures, Modeling
and Simulation, IC-SAMOS 2008, S. 74–81, 2008.

[GL16] Galbas, Roland; Lock, Andreas: , Trends in Automotive E/E architectures. http://www.
safetrans-de.org/de_21_Industrial_Day.php, 2016.

[KJS10] Kang, Eunsuk; Jackson, Ethan; Schulte, Wolfram: An approach for effective design space
exploration. Foundations of Computer Software. Modeling, Development, and Verification
of Adaptive Systems, S. 33–54, 2010.

[PBK10] Prasad, K. V.; Broy, M.; Krueger, I.: Scanning Advances in Aerospace & Automobile
Software Technology. Proceedings of the IEEE, 98(4):510–514, April 2010.

[Pr07] Pretschner, Alexander; Broy, Manfred; Krüger, Ingolf H.; Stauner, Thomas: Software engi-
neering for automotive systems: A roadmap. FoSE 2007: Future of Software Engineering,
S. 55–71, 2007.

[Ro17] Ross, Jordan A.; Murashkin, Alexandr; Liang, Jia Hui; Antkiewicz, Micha??; Czarnecki,
Krzysztof: Synthesis and exploration of multi-level, multi-perspective architectures of
automotive embedded systems. Software and Systems Modeling, S. 1–29, 2017.

[So13] Sommer, Stephan; Camek, Alexander; Becker, Klaus; Buckl, Christian; Zirkler, Andreas;
Fiege, Ludger; Armbruster, Michael; Spiegelberg, Gernot; Knoll, Alois: RACE : A
Centralized Platform Computer Based Architecture for Automotive Applications. 2013.

[SVZ15] Schätz, Bernhard; Voss, Sebastian; Zverlov, Sergey: Automating Design-space Exploration:
Optimal Deployment of Automotive SW-components in an ISO26262 Context. Proceedings
of the 52Nd Annual Design Automation Conference, S. 99:1–99:6, 2015.

http://www.safetrans-de.org/de_21_Industrial_Day.php
http://www.safetrans-de.org/de_21_Industrial_Day.php

10 Johannes Eder

[VS13] Voss, Sebastian; Schatz, Bernhard: Deployment and scheduling synthesis for mixed-critical
shared-memory applications. Proceedings of the International Symposium and Workshop
on Engineering of Computer Based Systems, (April):100–109, 2013.

[ZP12] Zeller, Marc; Prehofer, Christian: Modeling and efficient solving of extra-functional
properties for adaptation in networked embedded real-time systems. JOURNAL OF
SYSTEM ARCHITECTURE, S. 1067–1082, 2012.

cba

(Hrsg.): ,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2018 1

Ein Mittel zur Wiederverwendung – Komponentenbasierte
Architekturen in der Automatisierungstechnik

Constantin Wagner1, Julian Grothoff2, Prof. Dr.-Ing. Ulrich Epple3

1 Einleitung

Im Rahmen einer fortschreitenden Vernetzung und zunehmenden Flexibilisierung der
industriellen Produktion durch Initiativen wie Industrie 4.0 und IoT rückt die wandelbare
Fabrik und die rentable Produktion mit der Losgröße eins in den Fokus. Zur Umsetzung der
damit verbunden neuen Anforderungen ist eine Anpassung der Produktionssysteme nötig.
Dazu müssen sich Hardware und Software, sowie Embedded Systeme gleichermaßen auf
die jeweiligen neuen Aufgaben einstellen lassen. Da es nur schwer möglich ist alle Aufgaben
im Lebenszyklus einer wandelbaren Fabrik zum Zeitpunkt ihrer Planung vorherzusehen,
muss diese so entworfen sein, dass sie sich an neue Aufgaben anpassen kann [Wa17].
Zusätzlich müssen Konzepte entwickelt werden, die den Aufwand für das Engineering
dieser Systeme auf das absolut nötige begrenzen. Ein Ansatz dafür ist die Wiederverwendung
von bestehenden Lösungen, seien es Hardware- oder Softwarelösungen, zu unterstützen.
Die Vorteile der Wiederverwendung wurden in [Li94] untersucht, und umfassen eine
Verbesserung der Markteinführungszeit, der Produktqualität und der Produktivität. Die
Herausforderungen bzw. die Hemmnisse für die Wiederverwendung bestehender Lösungen
sind organisatorischer und menschlicher Natur [Me88]. Zusätzlich ist die Entwicklung von
wiederverwendbarem Code bis zu 480% teurer als von konventionellen Programmen [Li94].

In diesem Beitrag werden, ausgehend von einer Definition des Komponenten
Begriffs, verbreitete und akzeptierte Architekturen auf Basis von Komponenten
in der Automatisierungstechnik vorgestellt. Anschließend wird der Nutzen von
komponentenbasierten Architekturen als Grundlage für die Wiederverwendung in
der Automatisierungstechnik diskutiert. Abschließend werden bestehende Herausforderung
im Hinblick auf die Wiederverwendung dargestellt und im letzten Abschnitt wird für diese
ein Lösungsweg skizziert.
1 Lehrstuhl für Prozessleittechnik, RWTH Aachen University, Turmstraße 46, D-52064 Aachen, c.wagner@plt.

rwth-aachen.de
2 Lehrstuhl für Prozessleittechnik, RWTH Aachen University, Turmstraße 46, D-52064 Aachen, j.grothoff@plt.

rwth-aachen.de
3 Lehrstuhl für Prozessleittechnik, RWTH Aachen University, Turmstraße 46, D-52064 Aachen, epple@plt.rwth-

aachen.de

https://creativecommons.org/licenses/by-sa/4.0/
 c.wagner@plt.rwth-aachen.de
 c.wagner@plt.rwth-aachen.de
 j.grothoff@plt.rwth-aachen.de
 j.grothoff@plt.rwth-aachen.de
epple@plt.rwth-aachen.de
epple@plt.rwth-aachen.de

2 Constantin Wagner, Julian Grothoff, Prof. Dr.-Ing. Ulrich Epple

2 Komponenten in der Automatisierungstechnik

Der Begriff der Komponente ist weitverbreitet und wurde u. a. in der DIN SPEC
40912 [DIN14] und von der Object Managment Group [OMG15] definiert. In [DIN14]
wird eine (technische-) Komponente als „vorgefertigte, in sich strukturierte und
unabhängig hantierbare Einheit zur Realisierung einer konkreten Rolle in einem System“
definiert. Wenn die Forderung nach einer definierten Schnittstelle als Bestandteil der
Hantierbarkeit aufgefasst wird, ist die Definition vergleichbar zu der Definition von
Softwarekomponenten in UML [OMG15]. Ein Überblick über verschiedene Definitionen
sowie die charakterisierenden Eigenschaften von Softwarekomponenten ist in [Di02] zu
finden. In diesem Beitrag werden Komponenten im Sinne der technischen Komponenten
als Soft- und Hardware, sowie Mischformen wie eingebettete Systeme verstanden. Dies ist
für die Automatisierungstechnik ein essentieller Gedanke, da ihre Kernkompetenz in der
Integration von Funktionalität liegt, die interdisziplinär in Hard- und Software realisiert wird.
Durch die ßtrukturierteÄrt der Komponenten kann eine Hierarchisierung erreicht werden.
Damit existieren im Kontext der Betrachtung zwei Arten von Komponenten: atomare und
aggregierte Komponenten (Komponentensystem). Atomare Komponenten können nicht
unterteilt werden und sind Black-Boxen. Aggregierte Komponenten bestehen aus atomaren
und aggregierten Komponenten und ihr interner Aufbau ist erkundbar. Komponenten sind
durch ihre Handhabbarkeit in mehreren Systemen einsetzbar und damit direkt eine Quelle
der Wiederverwendbarkeit (vgl. Abschnitt 3,[Di02]).

Beispiele für komponentenbasierte Architekturen in der Automatisierungstechnik sind
Funktionsbausteine aus der IEC 61131 [IEC14] und IEC 61499 [IEC05], Package Units, die
Betrachtung von Sensoren und Aktoren in Anlagen, sowie Rohrleitungs- und Instrumenten-
Fließbilder. Funktionsbausteine und Hardwarekomponenten sind klassische Beispiele für
komponentenbasierte Architekturen, die sich über Jahrzehnte etabliert haben. Aber auch die
Elemente von Fließbildern können im Weiteren als Komponenten aufgefasst werden, da sie
in ihrer Umgebung einzeln handhabbar sind, einen konkreten Zweck haben und definierte
Schnittstellen bereitstellen.

Für den Aufbau des Softwareteils der Automatisierungslösung (System für die
Automatisierung z. B. einer Anlage, vgl. [Vo14]) werden in der Regel die
Programmiersprachen der IEC 61131 verwendet [JT00]. Zur Strukturierung hat sich die
Verwendung von Funktionsbausteinen in Funktionsbausteinnetzwerken etabliert. Dabei
werden einzelne Aufgaben in einem Funktionsbaustein gekapselt, der über definierte (Signal-
)Schnittstellen, sogenannte Ports, verfügt und innerhalb des Automatisierungssystems
instanziiert, gelöscht und manipuliert werden kann. Der rückwirkungsfreie Austausch
von Daten wird mit Signalverbindungen zwischen den Ports von Bausteinen realisiert.
Diese komponentenbasierten Softwarearchitektur hat sich historisch aus der Hardware
Komponententechnik (Einzelgerätetechnik) entwickelt, was die vereinheitlichte Betrachtung
von Hard- und Softwarekomponenten als "technische Komponenten"weiter motiviert.
Als Erweiterung der klassischen Bausteintechnik im Hinblick auf Verteilbarkeit von
Lösungen und der Ausführungssemantik wurde die IEC 61499 vorgestellt. Für die

Ein Mittel zur Wiederverwendung – Komponentenbasierte Architekturen in der
Automatisierungstechnik 3

Realisierung einer eventbasierten Ausführung wurden neben den klassischen Ports
Eventports eingeführt. Analog dazu existieren Eventverbindungen, um den Fluss von Events
zwischen den Bausteinen abbilden zu können. Funktionsbausteine können zu aggregierten
Funktionsbausteinen (CFB) zusammengefasst werden. Durch die Verwendung von globalen
Variablen in einem Funktionsbaustein ist dieser allerdings keine Komponente im Sinne
der vorgestellten Definition. Der Funktionsblock ist dann nicht mehr abgegrenzt und kann
nicht in anderen Steuerungsprogrammen ohne die deklarierte Variable eingesetzt werden.
Hierbei wird deutlich, dass die Hantierbarkeit der technischen Komponente essentiell für
deren Wiederverwendbarkeit ist.

Wie erwähnt werden auch Hardwareteile als Komponenten in einer Anlage und damit als
Bestandteil der Automatisierungslösung angesehen. Dies sind beispielsweise Sensoren
und Aktoren, wie Pumpen und Temperatursensoren. Auch die Hardwarekomponenten
verfügen über eine definierte Schnittstelle (z. B. Zweidraht über 4 bis 20 mA oder einen
Profibus Anschluss). Eine Form der Aggregation von Hardwarekomponenten findet sich
beispielsweise bei der Verwendung von Package Units. Dabei werden Module einer
Anlage als komplette Einheit bereitgestellt, beispielsweise bei Verpackungsmaschinen.
Diese können über eine eigene Automatisierungslösung verfügen, die sich entweder in ein
übergeordnetes Leitsystem einfügt oder eigenständig betrieben wird. Die Wiederverwendung
von Hardwarekomponenten kann dabei analog zu der Klasse-Instanz Beziehung in
Softwaresystemen gesehen werden. Ein Pumpentyp kann mehrfach produziert und
anschließend in verschiedenen Anlagen eingesetzt werden. Der Unterschied sind im
wesentlichen die Grenzkosten in der Herstellung von Instanzen, die in Softwaresystemen
nahezu Null sind.

Im Prozess der Planung einer Prozessanlage entstehen Diagramme, die den geplanten
Aufbau der Anlage bestehend aus den Rohren und Instrumenten darstellen. Sie bilden die
Grundlage für die Planung der Automatisierungslösung, da sie den Zweck (Rolle) der
zur Prozessführung benötigten Komponenten beschreiben. Die einzelnen Bestandteile der
Diagramme (z. B. Messstellen und Aktoren) sind mit den jeweiligen Anforderungen an sie
und den Verbindungen zwischen ihnen dargestellt und können als Komponenten aufgefasst
werden. Die Diagramme haben insofern zwei Aufgaben, als das sie auf der einen Seite ein
Rollenmodell für die zu bauende Anlage und ihre Komponenten darstellen, auf der anderen
Seite sind sie selbst Modelle, die sich aus einzelnen Komponenten zusammensetzten. Als
elektronisches Austauschformat wurde dafür mit PandIX eine CAEX Bibliothek auf Basis
der IEC 62424 [IEC16] vorgestellt.

Durch die zunehmende Verwendung von OPC UA [IEC10, GPP16] und der damit
verbundenen Modellierung von Daten und Zusammenhängen in objektorientierten
Informationsmodellen wird die Verwendung von komponentenorientierten Architekturen
zunehmen. In diesen Informationsmodellen werden viele Informationen verschiedener
Organisationseinheiten gespeichert und zugänglich gemacht werden. Daher ist davon
auszugehen, dass diese zunehmend größer und komplexer werden. Es muss ein Anliegen

4 Constantin Wagner, Julian Grothoff, Prof. Dr.-Ing. Ulrich Epple

sein, den Aufwand für die Erstellung und Pflege dieser Modelle so gering wie möglich zu
halten.

An den vorgestellten Beispielen ist zu erkennen, dass komponentenbasierte Architekturen in
der Automatisierungstechnik weit verbreitet sind. Worin sich die Automatisierungstechnik
von anderen Fachdisziplinen unterscheidet, ist die Betrachtung von interdisziplinären
Systemen [Ho13]. Aufgrund der Rückwirkung auf den automatisierten Prozess (z. B. ein
Produktionsprozess) muss neben dem Softwareteil der Automatisierungslösung zusätzlich
noch die Ankopplung an den Prozess und damit die verbaute Hardware berücksichtigt
werden [Vo14]. Insbesondere die Abhängigkeiten zwischen Software- und Hardware, sowie
deren Modellierung stellen eine große Herausforderung dar. Im Kontext einer wandelbaren
Fabrik sind diese Informationen allerdings wichtig, um das Gesamtsystem betreiben zu
können.

3 Wiederverwendung

Wiederverwendung bedeutet die mehrfache Nutzung eines Assets in mehr als einem
System [ISO11]. Wie in Abschnitt 1 bereits ausgeführt, bietet die Wiederverwendung
das Potential zur Verbesserung der Markteinführungszeit, der Produktivität und der
Qualität von Softwareprodukten [Li94]. Nicht nur in der Softwareentwicklung, sondern
auch in der Automatisierungstechnik und der Hardwareentwicklung wird seit langem
versucht die Wiederverwendung von Assets zu unterstützen [Sc16]. Die Entwicklung von
neuen Konzepten zur Unterstützung der Wiederverwendung, z. B. durch eine verbesserte
Beherrschung der Variantenvielfalt, steht allerdings weiterhin auf der Agenda [Vo14]. Ein
Überblick über die verschiedenen Stufen der Wiederverwendung, wie beispielsweise der
mehrfachen Verwendung von Instanzen eines Komponententyps oder des Copy & Paste, ist
in [Sc16] dargestellt.

In Abschnitt 2 wurden komponentenbasierte Architekturen in der Automatisierungstechnik
vorgestellt. Diese Komponenten selbst und die teils implizite Nutzung von Typ-/Instanz-
Konzepten sind der erste Schritt zur Unterstützung der Wiederverwendung. So werden
beispielsweise mehrere Pumpen des gleichen Typs in verschiedenen Anlagen eingesetzt
oder Funktionsbausteine in unterschiedlichen Automatisierungslösungen verwendet.
Organisatorische Beschränkungen und eine fehlende explizite Verwaltung führen jedoch
dazu, dass vorhandenen Komponenten, nicht jedem potentiellen Nutzer bekannt sind.
Zusätzlich zur Wiederverwendung von vorhandenen Komponenten wird versucht die
Struktur von verwendeten Lösungen (z. B. Reglerstrukturen) erneut zu nutzen, dies stellt eine
Wiederverwendung von Designvorlagen dar. Werden die Lösungen selbst wiederverwendet
handelt sich in der Regel um ein Copy & Paste oder die Verwendung eines Templates.
Möglichkeiten zur Ausgestaltung dieser Ansätze für Funktionsbausteine wurden in [WGE16]
vorgestellt.

Ein Mittel zur Wiederverwendung – Komponentenbasierte Architekturen in der
Automatisierungstechnik 5

Es ist zu erkennen, dass der Entwurf und die Nutzung von Komponenten an sich ein sehr guter
Ansatz für die Wiederverwendung sind, was in der Automatisierungstechnik bereits genutzt
wird. Allerdings bietet sich noch Potential im Bereich der Wiederverwendung von aus
Komponenten zusammengesetzten Lösungen (Komponentensysteme), wie beispielsweise
Funktionsbausteinnetzwerken, Schrittketten oder Package Units. In diesen Bereichen ist es oft
erforderlich Lösungen zu entwickeln, die sich nur in Nuancen unterscheiden. Daher ist eine
Unterstützung bei der Wiederverwendung und Modifizierung von Lösungen erforderlich.
Dabei müssen die Abhängigkeiten zwischen den verwendeten sowie möglicherweise
modifizierten Komponentensystemen und dem Original abgebildet werden können, um
die Wartbarkeit durch die Propagierung von Updates zu erleichtern. Zudem werden
Rollenmodelle, die den Zweck der später eingesetzten Komponenten bestimmen, oft
nicht explizit definiert und zusammen mit den realisierenden Komponenten über den
Lebenszyklus der Anlage verwaltet. Dies erschwert die Zerlegung der Lösungsarchitektur
in generische und spezielle Teile. Zusätzlich ist die Einbindung von unterschiedlichen
Versionen von Assets und die Darstellung von den Abhängigkeiten zwischen diesen eine
noch nicht abschließend gelöste Herausforderung und sollte ebenfalls berücksichtigt werden.

4 Ausblick

In diesem Beitrag wurden komponentenbasierte Architekturen in der Automatisierungstechnik
vorgestellt und ihr Nutzen für die Wiederverwendung verdeutlicht. Darüber hinaus wurden
Herausforderungen im Bereich der Wiederverwendung von Komponentensystemen in
Bezug auf die Unterstützung und die Bekanntheit von bestehenden Lösungen identifiziert.
Zusätzlich müssen durchgängige Lösungen für hybride Systeme, d. h. aus Hard- und
Softwarekomponenten bestehende Systeme, entwickelt werden.

Ein Weg die aufgezeigten Herausforderungen zu lösen ist es, ein Modell zu entwerfen,
das Software- und Hardwarekomponenten gleichermaßen beschreibt. Dieses Modell
muss von den Unterschieden abstrahieren und Komponenten als ganzes handhabbar
machen. Durch dieses Modell sollen die verschiedenen Komponenten eines Systems
und die Verbindungen zwischen diesen beschrieben werden. Ein solches Modell für
Funktionsbausteine wurde in [En01] vorgestellt. Dieses Model bildet die Basis für die
Beschreibung von hybriden Systemen als Varianten. So kann die Wiederverwendung von
aus Komponenten zusammengesetzten Lösungen unterstützt werden.

Für den Einsatz in der Praxis sind geeignete Prozesse und Vorgehensmodelle nötig, die die
Wiederverwendung unterstützen und sich in bestehende Prozesse einfügen. So wird die
Akzeptanz und Nutzung der Wiederverwendung gesteigert. Damit die Modelle nicht alle
händisch erzeugt werden müssen, sind automatisierte Modelltransformationen nötig, die
den Nutzer soweit wie möglich von diesen wiederholenden und fehleranfälligen Tätigkeiten
entlasten.

6 Constantin Wagner, Julian Grothoff, Prof. Dr.-Ing. Ulrich Epple

Literaturverzeichnis
[Di02] Dietzsch, Andreas: Systematische Wiederverwendung in der Software-Entwicklung.

Deutscher Universitätsverlag, Wiesbaden and s.l., 2002.
[DIN14] DIN SPEC 40912: Kernmodelle - Beschreibung und Beispiele, 2014.
[En01] Enste, Udo: Generische Entwurfsmuster in der Funktionsbausteintechnik und deren

Anwendung in der operativen Prozeßführung: Zugl.: Aachen, Techn. Hochsch., Diss., 2000,
Jgg. 884 in Fortschritt-Berichte VDI Reihe 8, Meß-, Steuerungs- und Regelungstechnik.
VDI-Verl., Düsseldorf, als ms. gedr. Auflage, 2001.

[GPP16] Grüner, Sten; Pfrommer, Julius; Palm, Florian: RESTful Industrial Communication with
OPC UA. IEEE Transactions on Industrial Informatics, S. 1, 2016.

[Ho13] Holm, Thomas; Schröck, Sebastian; Fay, Alexander; Jäger, Tobias; Löwen, Ulrich:
Engineering von “Mechatronik und Software“ in automatisierten Anlagen: Anforderungen
und Stand der Technik. In: Software Engineering (Workshops). S. 261–272, 2013.

[IEC05] IEC 61499: Function blocks, 2005.
[IEC10] IEC 62541. OPC Unified Architecture Part 1-10, Release 1.0, 2010.
[IEC14] IEC 61131:Programmable controllers - Part 3: Programming languages, 2014.
[IEC16] IEC 62424: Representation of process control engineering - Requests in P&I diagrams and

data exchange between P&ID tools and PCE-CAE tools, Juli 2016.
[ISO11] ISO/IEC 25010: Systems and software engineering – Systems and software Quality

Requirements and Evaluation (SQuaRE) – System and software quality models, 2011.
[JT00] John, Karl-Heinz; Tiegelkamp, Michael: SPS-Programmierung mit IEC 61131-3: Konzepte

und Programmiersprachen, Anforderungen an Programmiersysteme, Entscheidungshilfen.
VDI-Buch. Springer, Berlin and Heidelberg and New York and Barcelona and Hongkong
and London and Mailand and Paris and Singapur and Tokio, 3., neubearb. aufl. Auflage,
2000.

[Li94] Lim, W. C.: Effects of reuse on quality, productivity, and economics. IEEE Software,
11(5):23–30, 1994.

[Me88] Meyer, Bertrand: Object-oriented software construction, Jgg. 2. Prentice hall New York,
1988.

[OMG15] OMG Unified Modeling Language, 2015. Version 2.5.
[Sc16] Schröck, Sebastian: Interdisziplinäre Wiederverwendung im Engineering automatisierter

Anlagen: Anforderungen, Konzept und Umsetzungen für die Prozessindustrie. VDI Verlag
GmbH, 2016.

[Vo14] Vogel-Heuser, Birgit; Diedrich, Christian; Fay, Alexander; Jeschke, Sabine; Kowalewski,
Stefan; Wollschlaeger, Martin; Göhner, Peter: Challenges for Software Engineering in
Automation. Journal of Software Engineering and Applications, 07(05):440–451, 2014.

[Wa17] Wagner, Constantin; Grothoff, Julian; Epple, Ulrich; Drath, Rainer; Malakuti, Somayeh;
Grüner, Sten; Hoffmeister, Michael; Zimmermann, Patrick: The role of the Industry 4.0
Asset Administration Shell and the Digital Twin during the life cycle of a plant. In:
ETFA 2017 - 22nd IEEE International Conference on Emerging Technologies and Factory
Automation. 2017.

[WGE16] Wagner, Constantin; Grüner, Sten; Epple, Ulrich: Portabilität und Wiederverwendbarkeit
von auf Funktionsbausteinnetzwerken basierenden Anwendungen. In: Entwurf komplexer
Automatisierungssysteme. Magdeburg, 2016.

cba

Herausgeber et al. (Hrsg.): Name-der-Konferenz,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2018 11

Integrating a Signaling Component Model into a Railway
Simulation

Daniel Schwencke1

Abstract: The validation of software component models is an important activity: The software product
usually is derived more directly from a model than from a classical textual specification. Modeling tool
suites support this activity by providing code generation and model simulation features. For simulation,
an environment for the component needs to be set up: This may be stubs, or the real environment. We
report on a third approach where a signaling component model is integrated into a railway simulation.
We present the steps taken and what needs to be considered, the integration architecture, and give an
account of which kinds of problems have been detected thanks to the simulation. From the successful
integration we conclude that the generic model as well as the configuration data used for the integration
are valid. Finally, we compare the aforementioned approaches to environments for model simulation.

Keywords: model; validation; simulation; railway; signaling; Radio Block Center; RBC; ETCS

1 Introduction

Model-based approaches have gained visibility over the last years. They are promising both
in terms of higher product quality — due to the precision and compactness of models which
can help to cope with system complexity — and greater efficiency — due to applicability
of automated tools which verify properties or transform the model. Considering also the
initial modeling effort, the latter in particular pays off when changes need to be made to a
system as part of a development cycle or maintenance; they only must be made to the model
instead of different documents and artifacts.

Models can be used for different purposes and at different stages of a system life-cycle. Here
we are interested in using models in the context of system validation. For example, models
can be used for system specification, and this specification can then be executed in order to
validate it. Thus the model allows for testing already in this early life cycle-phase; in case of
standardized specifications even independent from a concrete realization project. Models
can also be used as reference or for test case generation ("model based testing") in order to
validate real system implementations.

In some application areas model-based approaches have spread widely. For example in the
automotive sector it seems a convenient way to support variant management. In the current
1 German Aerospace Center (DLR), Institute of Transportation Systems, Lilienthalplatz 7, 38108 Braunschweig,

Germany; daniel.schwencke@dlr.de

https://creativecommons.org/licenses/by-sa/4.0/
daniel.schwencke@dlr.de

12 Daniel Schwencke

paper we present an example from the railway domain, where their adoption seems to be
significantly lower. Besides being generally more safety-critical and conservative, other
reasons for that may be the generic nature of railway signaling components (i.e. they need
to be configurable for arbitrary track layouts) and (anticipated) risks for the mandatory
component certification.

Nevertheless, Deutsche Bahn (DB) has produced a set of interface specifications for
their new "digital interlockings"using models (NeuPro project) in the Systems Modeling
Language (SysML) and has started to carry that approach to a European level (EULYNX,
see [EUL18]). Starting with the particular interface to the so-called Radio Block Center
(RBC) component, we have created an RBC SysML model using PTC Integrity Modeler.
We have been reporting on that activity in the article [SHC17] of the previous MBEES
workshop. In the current paper, we share our experiences with integrating and running the
RBC model as part of a railway simulation in order to validate it. Note that this differs from
the validation efforts of DB who validate single state charts through expert users which are
provided with a graphical user interfaces for that state chart.

The paper is organized as follows: Sect. 2 recalls basic information on the RBC model used
in our case study, and Sect. 3 gives an overview of the working steps necessary in order
to integrate it into the railway simulation. Sect. 4, 5, 6 and 7 describe conditions on this
undertaking exported by the different working step activities according to our experience.
Sect. 8 and 9 contain information on running the model as part of the simulation and on its
validation. Sect. 10 discusses alternatives to using a railway simulation environment, and
Sect. 11 summarizes the paper and points to remaining work.

The author would like to thank his colleagues Mirko Caspar and Jonas Grosse-Holz for
RBC integration support on the railway simulation side.

2 The Radio Block Center Model

The signaling component chosen for modeling and integration into a railway simulation is
the RBC. Being part of the European Train Control System (ETCS), an RBC provides a
radio interface between interlocking and train (see Fig. 1). It receives information on the
current state of signals and switches from the interlocking as well as on the current position
from the train. Based on that information plus data on the railway infrastructure in its area,
its main task is to issue so-called "movement authorities"to the train, telling how far and how
fast the train may go. Other functionalities include for example emergency stopping of trains
or managing temporary speed restrictions. An RBC is a safety critical system and needs
to adhere to the highest standards for railway signaling systems (SIL4). Important aspects
that led us to choose the RBC are the suitable level of complexity (reasonably complex, but
manageable) and that it essentially is a software system.

The RBC model has been developed using PTC Integrity Modeler and basically consists
of SysML block definition diagrams and state charts as well as additional C++ program

Model Integration into Rail Simulation 13

Fig. 1: The RBC as part of the ETCS Level 2 (simplified presentation, ILS = interlocking system).

code. The model exhibits no complete implementation of an RBC, only core functionality
necessary to operate a demonstration line has been included. However, the functionality
available has been modeled in a realistic scope; for example, the RBC is multi-train and
multi-interlocking capable, can be used for arbitrary track layouts, and can be extended
upon demand to include more special functionalities. For more information on the model as
well as on the underlying standards, tools and languages we refer the reader to the articles
[SH16; SHC17].

3 Approach

The railway simulation into which the model was to be integrated was given as the one
available in DLR’s RailSiTe® lab. It is regularly used for ETCS on-board unit tests, for
which the lab is accredited, so it supports the simulation of train rides controlled by ETCS.
Also, it is regularly used for studies conducted in a train driver simulator. This latter set-up
was utilized for our simulation since it naturally supports validation of an RBC: The outcome
of the most important RBC actions is visible on the driver machine interface (DMI), and
the time of passing a balise group which triggers some RBC action can be detected from
the front window.

Fig. 2 shows the working steps that have been performed in order to run the RBC model
as part of DLR’s railway simulation. The arrows indicate the order (dependencies) of the
steps; iterations (backwards arrows) occur in many places in practice but have been omitted
here to avoid a cluttered picture. First of all, the model to be integrated has been developed
in a way that code could be automatically generated from it. On the lab side, the necessary
interfaces have been prepared directly on program code level. All of those activities are
generic (colored blue), i.e. they are independent of a particular railway infrastructure (track
topology, signal locations, gradient and speed profiles etc.). This is important for signaling
systems as a new development for each specific infrastructure would be unaffordable; but on

14 Daniel Schwencke

Fig. 2: Working steps towards running a signaling component model as part of a railway simulation.
Generic development steps are colored blue, steps requiring a specific track layout are colored purple.

the other hand this poses challenges for system validation since the system can be configured
for arbitrary infrastructures and needs to ensure safe operation in any case. For the purpose
of this paper, we shall not discuss this issue further but limit ourselves to showing that we
have kept our model generic and that it can indeed be configured for arbitrary infrastructures,
as well as the lab (the corresponding activities are colored purple). Finally, the railway
simulation of the lab can be run together with the model, i.e. a concrete operational scenario
is simulated on the specific infrastructure for which the systems have been configured. As
the modeling tool suite used provides state simulation capabilities, this can optionally be run
in parallel, resulting in animated model diagrams during the railway scenario simulation.

4 Creating a Model Suitable for Integration into a Railway Simulation

As shown in Fig. 2, model development basically comprises four kinds of activities:
architectural considerations, structure modeling, modeling of the behavior and adding
program code to the model. The goal of integration into a railway simulation already
influences the first activity, since it includes the definition of interfaces of the model, some
of which may be connected to the simulation later. In the case of the RBC the latter applies
to the interlocking and train (on-board unit) interfaces, cf. Fig. 3. Luckily, in both cases
we could build on existing standards (the German SCI RBC [SCI14] for the interlocking
interface and ETCS Subset 026 [SS16a] for the train interface) which precisely define the
messages that can be exchanged. Those have been implemented in the model (and made
available in the lab, see Sect. 6 below). While it made sense to choose the original messages,
it was decided to deviate from the original underlying communication mechanisms: Instead
of the DB RaSTA protocol via UPD/IP Ethernet communication demanded by the SCI RBC
and instead of the GSM-R radio communication demanded by ETCS, for both interfaces
the messages are transferred via TCP/IP Ethernet between model and lab. This choice did
not only imply easier implementation of the communication, but also could be realized

Model Integration into Rail Simulation 15

Fig. 3: Components and communication links for the integration of the RBC model into the railway
simulation. The red components constitute the RBC, the light blue ones are the further relevant
components of the railway simulation, and the grey ones pertain to visualization.

without special radio equipment. However, one needs to bear in mind the differences (e.g.
concerning delay or reliability of transmission) that are introduced into the simulation
compared to the original communication. In order to be able to work also with original
components in the future, the RBC interfaces have been modeled in a flexible way so that
arbitrary communication mechanisms may be plugged in.

One precondition on the model has been that it can be executed at least in real time, since
this is desirable when including a train simulator in the railway simulation. This requirement
needed to be kept in mind throughout all of the model development activities, as control
and data flow are refined starting from interface definition, continuing with flat or deeply
nested modeled structures and behavior which may use broadcasting or direct links, down
to the use of more or less efficient data structures and algorithms on code level. Fortunately,
real-time conditions for signaling systems are not that hard (usual time for a functionality in
the overall signaling system is one to several seconds) and it turned out that so far there
were no difficulties at all to meet the real-time requirement. However, this may become
of interest again when the model is used for multi-train/multi-interlocking operation and
further functionalities are included.

There are also some practical issues when running a railway component such as loading
configuration data, getting diagnostic information and accessing the component for main-
tenance. Such issues are solved by manufacturers for real components operating in the
real railway environment, but a different solution may be needed for models as part of
a simulation. For easy configuration of the model, we decided to provide two separate
files: One settings file containing identifier/value pairs for initialization during start-up,
and one file containing infrastructure data simply in the form of program code which is
included at compile time, creating several infrastructure objects. This way no additional data
format needed to be defined and implemented. For diagnostic information, a flexible logging

16 Daniel Schwencke

mechanism has been included in the model. For interaction a simple command line menu
has been prepared which provides a convenient way to establish or close RBC connections to
individual components during runtime; for initial connections to be established automatically
at start-up, default settings can be passed to the RBC via the settings file.

5 Code Generation

In principle, the code generation should be a push button activity and independent of the
integration into the railway simulation, except that it is a first necessary step to transform
the model into an executable form. In practice, it nevertheless is important to understand
how the model is transformed to program code for various reasons:

First of all, code generation may only support part of the model diagrams and elements
available in a language or modeling tool. The modeler needs to know this and to stick to
that subset.

In case of a SysML model, there is no completely defined semantics available, but it
is given to the model during code generation. For example, the execution order of state
chart transitions may depend on the code generator. Thus understanding the code generator
semantics is necessary if one wants to validate the model by running it in a railway simulation
— it may be the case that some unexpected behavior originates from the code generator
semantics rather than from a model error.

Another questions regards the handwritten code that has been added to the model: Is it
integrated into the code generated from the model’s diagrams as expected by the modeler?
For example, under which conditions are initial and final parentheses generated for a code
snippet, and is the handwritten code generated verbatim or is it processed in some way?

We have also seen cases where obviously the code generator produced erroneous code;
sometimes the errors result in a compiler message, but sometimes they stay hidden and may
be a subtle source of unexpected behavior. We utilized scripts in order to quickly, reliably
and reproducibly remove such errors from the code files after each code generation. However,
those scripts may require maintenance when the model is changed, so it is desirable to
retrieve an updated code generator as soon as possible.

Finally, code generators may not only be capable of generating the mere product code, but
also instrumented code for simulation of the model. We decided to use such a feature in
order to have animated state charts available during the railway simulation. We did not use
it for manipulation of the running model, which might have caused model behavior which
is otherwise impossible to stimulate. Another issue is to make sure that the additional code
in the instrumented version does not change the behavior of the model (except for intended
manipulations by the user) in any way; in our case, the code generator documentation
claimed this.

Model Integration into Rail Simulation 17

6 Preparation of Lab Interfaces

We have discussed the interfaces between model and lab from the model side already in
Sect. 4. Of course, the lab needs to provide the counterpart of those interfaces. Since for a lab
reuse of such interfaces is desirable, they should follow widespread standards, if available.
As mentioned above, in our case for both relevant lab-RBC interfaces such standards exist;
the ETCS standard had already been implemented in the lab and was then made available
externally via TCP/IP, and the SCI RBC standard has been newly implemented for the RBC
lab integration. The interface to the PTC Integrity Modeler was provided by PTC as part
of the tool and of the instrumented code (RBC model interface side), based on TCP/IP
communication as well.

For the RBC train interface further measures in order to ensure interoperability between lab
and RBC have been necessary. This was due to an old version of the ETCS on-board unit
which was incompatible with the RBC which was developed according to the newest version.
For message decoding on the RBC side, an existing component (external to the model,
see Fig. 3) was used which supports the different versions anyway. However, for further
processing a version converter was needed. Although officially not foreseen in the ETCS
standard, such a conversion was inferred from another ETCS specification ([SS16b], where
data forwarding between RBC and a neighboring RBC of different versions is specified).

The use of the external message decoder component brought up the need for specification
of that particular interface. It was decided to realize this on TCP/IP basis as well (which
did not cause additional asynchronism problems since the messages passed to the decoder
are received by the RBC from the on-board unit via TCP/IP right before). Messages were
wrapped, adding IDs in order for the RBC to be able to distinguish which message coming
back from the decoder has been received from which train previously.

7 Preparing a Railway Simulation

In order to run a railway simulation, a particular railway line (track topology and signaling
equipment) and operational scenario (train type, train control system, route, course of
events) have to be identified (cf. Fig. 2). In our case the single track line from Braunschweig
main station to Braunschweig Gliesmarode station and the scenario of a train ride starting
in ETCS Level 0 with later entry to Level 2 was chosen since for the latter a connection
between train and RBC is set up and used. Since that particular line is not equipped with
ETCS in reality, this has been done (mainly positioning of balises and assignment of balise
messages) according to the applicable DB guidance document [Ril14].

The line and scenario data are then used to prepare the different parts of the simulation:
Configuration files for the RBC model and the lab railway simulation are created which
contain distances, signals, points, balises, speed and gradient profiles, etc. The 3D-world for
visualization of the line has been available already but was adjusted to include the ETCS

18 Daniel Schwencke

balises. All of those preparations must happen in a consistent way; otherwise the intended
scenario will not work properly e.g. due to triggering of automatic train stops or a time shift
between simulation visualization and logic. The built-in configuration consistency check
that was implemented in the RBC helps to detect faulty RBC configurations.

The connection set-up between the different components from Fig. 3 is dependent on the
line and simulation scenario as well. For example, the number of interlockings connected
to an RBC may vary. It is also dependent on the deployment of components in the lab; in
our case, we needed to configure the IP addresses and ports for the TCP/IP connections
between the computers involved, and ensure a suitable network and firewall configuration
of all computers.

8 Running the Simulation

Fig. 4: Visual output of the railway simulation (driver’s view and ETCS DMI on the left) and of the
PTC Integrity Modeler state animation (upper right) as well as the current position of the train on the
map (lower right). The state chart shows in red the current RBC internal state ("stopping aspect") of
the red signal visible in the driver’s view.

For running the RBC model as part of the railway simulation, at least all of the components
from Fig. 3 that are not purely grey (pertain not to mere visualization) need to be started

Model Integration into Rail Simulation 19

up. In general, it is favorable that the component implementations do not create too many
dependencies regarding the order of start-up and connect automatically to each other using
predefined connection settings; for particular connections, exceptions from that rule may
make sense. Afterwards, the components need to be brought to the correct initial state for
the simulation scenario. In our case, that meant that a "Start of Mission"procedure bringing
the ETCS on-board unit to Level 0 operation had to be executed via the ETCS DMI and that
initial information on current signal and point states was transferred automatically from the
interlocking module to the RBC after start-up of both components. For finally executing the
scenario, in our set-up the train had to be driven manually (speed control lever in mock-up
and interaction with ETCS DMI) and also routes had to be set manually (interaction with
interlocking module). This offered an easy possibility to try out slight modifications of the
original operational scenario. In this context, DMI and front view visualization become
mandatory, of course. However, the lab could have been set-up to simulate the precise
scenario automatically, if that had been desired.

The simulation can be run with or without the RBC state chart animation. In the first case,
the instrumented version of the RBC model code must be generated, compiled and used.
The PTC Integrity Modeler must be started (requiring the PTC license) and the RBC model
must be loaded (requiring the PTC repository). Coherence must be ensured between the
model versions loaded in Integrity Modeler and the one from which the running RBC model
was generated. Then Integrity Modeler simulation mode can be started; starting up the
RBC model as well will result in a connection between those two which is used to transfer
information about newly created objects and changed states from the running model to
Integrity Modeler. The latter visualizes that by opening and coloring state charts for those
objects. Fig. 4 shows the visual outputs of the lab and the state animation for one scene of
the running operational scenario.

9 Validation Results and Scope

Here we shortly describe our experiences with the RBC model validation by running it as
part of the RailSiTe® railway simulation. We used the visual lab output as well as the state
animation and the RBC logging function in order to check whether the scenario proceeded
as expected. This way we could detect errors from a wide range of sources: errors in the
model, in the added code, in the code generator, in the newly implemented lab interfaces
and in the configuration data. Most often it was not difficult to locate the component where
the problem originated from; in order to support this, we ran the generated RBC code in a
debugging tool. And we could do so step by step, each time advancing a bit further in the
simulation scenario. Thus we conclude that validation by simulation is an effective tool
which can provide evidence that the generic model as well as the configuration data used for
the integration are valid. During validation it pays off if restarting the railway simulation
and the model is easily possible.

20 Daniel Schwencke

The clear majority of errors we found was in hand-coded parts (e.g. the code added to the
model). Since a good portion of the generated RBC code was generated from the modeled
diagrams (estimation: nearly half of the code lines), this confirms that modeling and using
code generation increases software quality. We found only very few errors in the modeled
diagrams, e.g. a missing state chart transition; here the modeling proved to be advantageous
again since it eased the location and correction of such errors. Problems that involved
the code generation (different interpretation of model by user and code generator) were
comparatively difficult to locate, but occurred only seldom.

10 Reflection on the Model in Simulation Approach

As stated in the paper’s abstract, a railway simulation is one possible environment for
model validation; other alternatives may include using stubs or running the model in a
real environment. Tab. 1 provides a compact comparison. While working with stubs may

Criterion Stubs Simulation Real Environment

Availability high — automatic gen-
eration possible

low — special purpose
software

medium — real hard-
and software

Integration ef-
fort

low — mostly auto-
matic

medium to high — inte-
gration effort, depending
on available interfaces

medium — installation
effort

Testing effort high — in-/outputs on
detailed level

low to medium — in-
/outputs on high level

low — stimulation/read-
off at external interfaces

Flexibility high — direct manipu-
lation

medium to high — indi-
rect manipulation on dif-
ferent levels

low — manipulation
only at external inter-
faces

Suited for com-
plex scenarios

low — inputs too de-
tailed

high — supports manip-
ulation on high level

high — supports manip-
ulation on high level

Closeness to re-
ality

low — depends on user high — realistic compo-
nents

high — real components

Tab. 1: Advantages and disadvantages of different validation environments for railway signaling
component models.

be a good idea for unit and integration testing, they do not provide (realistically) the
environment’s logic. On the other side, a real environment does, but may not be available
or too costly, especially when it comes to a railway signaling environment. So all in all
we think that for the validation of signaling component models railway simulations are a
favorable choice.

Model Integration into Rail Simulation 21

11 Conclusion and Future Work

In this article, we have reported on the validation of a railway signaling component model
by integrating it into a railway simulation. More precisely, a SysML model of an RBC has
been integrated and validated into DLR’s RailSiTe® laboratory.

A first conclusion, from the mere fact that the model could be integrated and ran well in the
simulation environment, is the general feasibility of modeling railway signaling components
generically and for realistic applications. Further steps to support this statement would be to
try the same approach with different components, with different configurations, and with
complete component models. Some work remains to be done if the development approach
is to be applied for real signaling components: A detailed semantics for SysML (which may
be part of the upcoming SysML 2.0 standardization work) would be needed as well as a
concept for migration to the new approach and a certified code generator. Most probable, this
will imply further restrictions on the model artifacts and programming language constructs
used. At least the model at hand was developed to result in deterministic code (i.e. without
concurrency) and avoiding circular control flow between the state charts.

Depending on the interfaces available and the configuration of the lab for a particular
operational scenario, the integration of a model into a railway simulation may require
some effort; certainly, there is potential for more efficient or automated ways to distribute
configuration data from a single source to the different components of the simulation.
However, we were pleased to see that the combination of model and railway simulation
allowed for efficient validation: The model obviously resulted in a high initial quality of the
component and provided the possibility for visual inspection during simulation by using the
state animation feature; and the simulation allowed for convenient stimulation and output
retrieval on the high-level interfaces like DMI and line visualization, while offering the
possibility to dig deeper when erroneous behavior was observed. It also turned out that
the inherent parallel validation of the configuration data and the newly implemented lab
interfaces was not much of a problem since the assignment of errors to the different possible
sources was quickly found in most cases, whereas tracking errors related to code generation
was more difficult. All in all, we conclude that validation of models by running them in
railway simulations is a practically feasible and may even be the favorable approach for
overall component validation. Provided that some particular requirements of the approach,
which we aimed to describe in this paper, are taken into consideration early, lab integration
can be organized in a smooth way.

In the future, we would like to investigate and exploit the benefits of a validated model. It
may be used as a reference for real signaling components, or for test case generation for
such components. It would be nice to see whether the quality of the component can be
increased further e.g. due to the extra model coverage criteria generated test cases can fulfill.
We also expect a clear decrease in maintenance effort of test cases (simply change model
and generate again).

22 Daniel Schwencke

References

[EUL18] EULYNX Website, 2018, url: https://www.eulynx.eu, visited on: 02/19/2018.
[Ril14] LST-Anlagen planen: Grundsätze zur Erstellung der Ausführungsplanung PT1

für ETCS Level 2, tech. rep. Richtlinie 819.1344, draft, DB Netze AG, Apr. 24,
2014.

[SCI14] SCI-RBC – FAS TAS TAV Schnittstelle ESTW-RBC V2. Baseline 0.19, tech.
rep., DB Netze AG, June 6, 2014.

[SH16] Schwencke, D.; Hungar, H.: Development of Reference Models of Signaling
Components: the Example of the Radio Block Center. Signal+Draht 108/9,
pp. 24–32, 2016.

[SHC17] Schwencke, D.; Hungar, H.; Caspar, M.: Between Academics and Practice:
Model-based Development of Generic Safety-Critical Systems. In (Huhn, M.;
Hungar, H.; Riebisch, M.; Voss, S., eds.): Modellbasierte Entwicklung einge-
betteter Systeme XIII (Proceedings of the Dagstuhl MBEES 2017 workshop).
fortiss GmbH, Munich, pp. 1–18, 2017, url: http://download.fortiss.org/
public/mbees/mbees2017_proceedings.pdf.

[SS16a] SUBSET-026 – System Requirements Specification. Version 3.6.0, tech. rep.,
ERTMS, June 15, 2016, url: http://www.era.europa.eu/Core-Activities/
ERTMS/Pages/Set-of-specifications-3.aspx.

[SS16b] SUBSET-039 - FIS for the RBC/RBC Handover. Version 3.2.0, tech. rep.,
ERTMS, June 15, 2016, url: http://www.era.europa.eu/Core-Activities/
ERTMS/Pages/Set-of-specifications-3.aspx.

https://www.eulynx.eu
http://download.fortiss.org/public/mbees/mbees2017_proceedings.pdf
http://download.fortiss.org/public/mbees/mbees2017_proceedings.pdf
http://www.era.europa.eu/Core-Activities/ERTMS/Pages/Set-of-specifications-3.aspx
http://www.era.europa.eu/Core-Activities/ERTMS/Pages/Set-of-specifications-3.aspx
http://www.era.europa.eu/Core-Activities/ERTMS/Pages/Set-of-specifications-3.aspx
http://www.era.europa.eu/Core-Activities/ERTMS/Pages/Set-of-specifications-3.aspx

