
13 AutoFocus 3 - A Scientific Tool Prototype
for Model-Based Development of

Component-Based, Reactive, Distributed
Systems

Florian Hölzl and Martin Feilkas

Institut für Informatik
Technische Universität München

D-85748 Garching, Germany
{hoelzlf,feilkas}@in.tum.de

Abstract. We give an introduction of the AutoFocus 3 tool1, which
allows component-based modeling of reactive, distributed systems and
provides validation and verification mechanisms for these models. Fur-
thermore, AutoFocus 3 includes descriptions of specific technical plat-
forms and deployments. The modeling language is based on precise se-
mantics including the notion of time and allows for a refinement-based
methodology for the development of reactive systems, typically found in
user-accessible embedded realtime-systems.

13.1 Introduction

Focus is a general theory providing a model of computation based on the no-
tion of streams and stream processing functions [1]. It is suitable to describe
models for distributed, reactive systems. Based on this mathematical semantic
foundation, we have developed a CASE tool, named AutoFocus 3, to allow for
graphical description of systems according to this model of computation. While
Focus allows different techniques to build formal specifications of component-
based, distributed systems, AutoFocus 3 only uses some of these techniques
as shown in the following. Furthermore, Focus allows to use different models of
time expressed through the notion of streams: in particular untimed, timed and
time-synchronous streams. AutoFocus 3 is based on the time-synchronous no-
tion of streams, which corresponds to a discrete notion of time based on globally
synchronized clocks. Focus targets at precise description of applications on a
logical level. Time is divided into logical ticks and logical components interact
synchronously with each other in this setting.

In order to develop real distributed systems, the application must be executed
on real hardware. Thus, during the development of the system, it is convenient to
have several levels of abstraction and different development views. While early
1 http://af3.in.tum.de/ provides a set of tutorials and screen shots of the current

released version.

H. Giese et al. (Eds.): MBEERTS, LNCS 6100, pp. 317–322, 2010.
Springer-Verlag Berlin Heidelberg 2010

http://af3.in.tum.de/


318 F. Hölzl and M. Feilkas

requirements are captured in natural language to allow flexibility, later levels
use more formal specifications and finally add technical details. We believe that
such a multi-layered set of models is the only way to cope with the complexity
of today’s systems by applying a strict separation of concerns during the phases
of the development process.

AutoFocus 3, as presented here, currently covers the lower-most levels of
abstraction, namely the logical system architecture and the technical architec-
ture, which provides the application execution environment. Higher levels of
abstraction and requirements oriented models have been studied in earlier ver-
sions [2]. Our goal is to provide a prototypical tool implementation that clearly
distinguishes between the models of different levels of abstraction and provides
support for methods to combine these models into a description of the system
under development along the complete development process. Larger case studies
showing the complete methodology from requirements to deployment have been
published: [3] presents a case study from the field of business systems, while [4]
presents a case study from the automotive domain.

13.2 Capabilities of AutoFocus 3

This section briefly describes the modeling techniques of the two levels of abs-
traction currently supported by the AutoFocus 3 tool: the logical architecture
and its mapping onto a hardware/software execution platform. The logical archi-
tecture describes application specific components, while the topology describes
the execution environment. For embedded systems the latter is usually a set
of distributed control units and communication busses. Finally, the deployment
model describes the mapping from application components onto execution and
communication units.

13.2.1 Logical Architecture

The logical architecture defines a model of the system under development from
an abstract point of view. The system’s functionality is described independently
of the concrete hardware/software environment and also independently of the
concrete distribution of (parts of) the system on these resources.

The system consists of a set of communicating components, each having its
own behavior specification, which may be stateful or stateless. Components ex-
change pieces of data in the form of typed messages. The semantic foundation
assumes a global, discrete notion of time, e.g. the components are synchronized
to a global clock.

Component Architecture
In AutoFocus 3 the system’s model is described as a set of communicating
components. Each component has a defined interface (e.g its black-box view)
and an implementation (e.g. its white-box behavior). The interface consists of a
set of communication ports. A port is either an input port or an output port. It is



AutoFocus 3 319

Fig. 13.1. A simple pedestrian crossing traffic light system

identified by its name and it has a defined type, thus describing which messages
can be sent or received via this port.

Components can exchange data by sending messages through output ports
and receiving messages via input ports. Communication paths are described by
channels. A channel connects an output port to some input port, thus describing
the sender/receiver relation. The data type of both ports must be compatible,
of course. Under certain conditions, a component is allowed to send messages to
itself, i.e. the model contains a feedback channel or more general a feedback loop.
Output ports allow multi-cast messages, while input ports only allow a single
incoming channel. From the logical point of view, channels transmit messages
instantaneously.

Fig. 13.1 shows an example of a pedestrian traffic lights system, which consist
of a controller for the application behavior and a merge component that merges
button signal from both sides of the road. Note that AutoFocus 3 provides a
hierarchical structuring of components in order to deal with larger systems in
an easily comprehensible manner.

Causality and Time
AutoFocus 3 component networks are executed synchronously based on a dis-
crete notion of time and a global clock. In this setting a component belongs to
one of two classes. A strong causal component (the blue ‘Controller’-component
in Fig. 13.1) has a reaction delay of at least one logical time tick which means
that the current output cannot be influenced by the current input values. A weak
causal component (marked yellow in AutoFocus 3, c.f. ‘Merge’ in Fig. 13.1)
may produce an output, which depends on the current input, e.g. the com-
ponent’s reaction is instantaneous. From the semantics point of view, networks
consisting of strong causal components are always well-defined, e.g. for the re-
cursive equation system induced by the channel connections unique fixed-points
always exist. Component networks including weak causal components are also
well-defined under the constraint that no weak-causal cycles exist, i.e. no weak
causal component may send a signal that would be fed back to itself in the
current time tick.

Stateful Behavior
To define stateful component behavior, we use a simple input / output automa-
ton model. The automaton consists of a set of control states, a set of data state
variables and a state transition function. One of the control states is defined to be



320 F. Hölzl and M. Feilkas

Fig. 13.2. Two ECU example topology for automotive lab hardware

the initial state of the component, while each data state variable has also a defined
initial value. The state transition function is defined as a mapping from the cur-
rent state, the current input values, and the current data state variable values to
output values and subsequent data state variable values. A single transition has a
source control state and a target control state, defines a set of input patterns, a set
of preconditions over data state variables and variables bound in input patterns,
and characterizes the output patterns and successor data state variable values.

Stateless Behavior
Time and again, some component has a relatively simple behavior like prioriti-
zing certain input values or making a pre-computation. These components might
not need data and control states at all. For this reason AutoFocus 3 provides
a simple tabular behavior specification that gives a (possibly non-deterministic)
mapping from input patterns to output patterns.

Validation and verification
AutoFocus 3 supports techniques to verify the logical architecture early in the
development process, such as automatic test case generation and model checking.
[4] presents the application of model checking techniques to verify the logical
architecture. Automatic test case generation (from a separate test model) has
also been applied in this case study to ensure the functional correctness of the
system.

13.2.2 Technical Architecture

The topology architecture describes the execution environment of the system
by means of execution control units (ECU) and busses. Embedded systems can
observe their environment through sensors and influence it via acutators, which
are connected to some ECU (like I/O devices in classical computers) or directly
on some bus.

Fig. 13.2 shows an example of a topology with two ECUs connected to a
common CAN bus. Each ECU provides a set of hardware ports: some LEDs,
push buttons and potentiometers. These ECUs are part of our automotive lab2

2 http://www4.in.tum.de/lehre/automotivelab/

http://www4.in.tum.de/lehre/automotivelab/


AutoFocus 3 321

demonstration hardware which is actively used in academic and industrial case
studies and students’ education [4].

Deployment
Having described the logical architecture and the execution environment, these
two views of the system must be related to each other. In particular, each logical
component has to be mapped onto some execution resource. Furthermore, logical
signals need to be mapped to hardware ports, e.g. I/O devices or bus messages.

For the given example system, we could define a distributed deployment by
assigning the Merge component to one ECU and the Controller component to
the other. Since the Merge sends a signal to the Controller the connecting chan-
nel channelReq is automatically deployed on the connecting CAN bus. For the
remaining signals, in particular the input signals of Merge and the output signals
of Controller, we use the push buttons and LEDs, respectively.

Code Generation
Having completed the deployment by assigning components to ECUs and signals
to hardware ports and bus messages, we can build our system to be run on
the real hardware. Practically, this means to use all of the information of the
model and produce C code from it, which can be compiled and flashed onto the
demonstration hardware. Most of this task can be automated by suitable code
generators or at least supported by the tool. Currently, this area is the most
active part of our tool development activities.

13.3 Conclusion

We have given a compact introduction to the core features of AutoFocus 3.
We have shown two system model layers: the logical architecture describing the
system application by means of communicating components and the technical
architecture describing the execution environment of the application by means
of electronic control units, sensors, activators, and busses. We have shown a
deployment model, which describes the mapping of system components to these
execution resources, thus relating the abstraction levels to each other. Finally,
we have obtained a complete model to be used for automatic code generation.

Of course, the model provided here is very simplistic. In particular, concerning
hardware and software resources of the execution environments, we have not
treated issues like precise timing and task scheduling, bus message identification
and mappings of data values to bus messages. Further work must be done in this
direction, possibly also including upcoming hardware techniques like multi-core
processors.

AutoFocus 3 is currently implemented on the Eclipse platform3. Since we
also develop other CASE-oriented tools, e.g. with different semantic foundations
or different target domains, like machine engineering, we have built a common
infrastructure, which allows a modular architecture. The deployment extension
3 http://www.eclipse.org/

http://www.eclipse.org/


322 F. Hölzl and M. Feilkas

presented here makes heavy use of this modularity and extensibility. In detail, the
topology and deployment features can be extended in specific ways: here, we have
shown our automotive lab extension, which provides a event-triggered execu-
tion environment, as an example. Other extensions might include time-triggered
architectures based on, e.g., FlexRay and OSEKtime. [5] already presents the
formally verified mapping between the logical architecture and a time-triggered
execution platform using the AutoFocus task model, which is closely related
to the model of computation of AutoFocus 3.

We believe that rigorous division of the engineering process into different levels
of abstraction with suitable models and precise semantics is a fundamental step
towards model-based software engineering, in particular for embedded systems.
We also believe that appropriate relations between these abstraction levels is
vital and must be well understood from the methodological point of view, and
of course supported by suitable tools. We have presented first steps towards this
vision by the example of AutoFocus 3.

Acknowledgements

We are especially grateful to Bernhard Schätz for providing continuous discus-
sions, in particular on the language semantics and deployment questions, to
Benjamin Hummel for his great work in building large parts of the tool infra-
structure, and to Wolfgang Schwitzer for his work on the deployment extension
of AutoFocus 3.

References

[1] Broy, M., Stølen, K.: Specification and Development of Interactive Systems: Focus
on Streams, Interfaces and Refinement. Springer, Heidelberg (2001)

[2] Geisberger, E., Grünbauer, J., Schätz: Interdisciplinary requirements-analysis using
the model-based rm tool autoraid. In: Automotive Requirements Engineering
(AURE 2006) Workshop at IEEE Intl. RE Conf. (2006)

[3] Broy, M., Fox, J., Hölzl, F., Koss, D., Kuhrmann, M., Meisinger, M., Penzenstadler,
B., Rittmann, S., Schätz, B., Spichkova, M., Wild, D.: Service-oriented modeling of
cocome with focus and autofocus. In: The Common Component Modeling Example:
Comparing Software Component Models, pp. 177–206. Springer, Heidelberg (2008)

[4] Feilkas, M., Fleischmann, A., Hölzl, F., Pfaller, C., Rittmann, S., Scheidemann, K.,
Spichkova, M., Trachtenherz, D.: A top-down methodology for the development of
automotive software. Technical Report TUM-I0902 Technical Report, Technische
Universität München (2009)

[5] Botaschanjan, J., Broy, M., Gruler, A., Harhurin, A., Knapp, S., Kof, L., Paul, W.,
Spichkova, M.: On the correctness of upper layers of automotive systems. Formal
Aspects of Computing 20(6), 637–662 (2006)


	13 AutoFocus 3 - A Scientific Tool Prototypefor Model-Based Development of Component-Based, Reactive, Distributed Systems
	Introduction
	Capabilities of AutoFocus 3
	Logical Architecture
	Technical Architecture

	Conclusion
	References


